6
$\begingroup$

I'm reading through this paper (on Dyck Paths). Near the middle of the second page, the author states the following:

Remark For the set $h_n$ there are ${k\choose t_1, t_2, ... , t_m }$ $n + k \choose{k}$ $=$ $ n + k\choose {n, t_1, t_2, ..., t_m}$ different Dyck paths.

What does ${k\choose t_1, t_2, ... , t_m }$ mean? I know what the binomial coefficient is, but I'm not sure how to interpret it when one of the parameters is a set.

$\endgroup$
3
  • $\begingroup$ This is a multinomial coefficient. $\endgroup$ Commented Jun 6, 2017 at 20:49
  • $\begingroup$ This I guess. $\endgroup$ Commented Jun 6, 2017 at 20:49
  • $\begingroup$ en.wikipedia.org/wiki/Multinomial_theorem $\endgroup$ Commented Jun 6, 2017 at 20:50

4 Answers 4

8
$\begingroup$

It is the multinomial coefficient. That is, the coefficient of $x_1^{t_1}x_2^{t_2}\cdots x_m^{t_m}$ in $(x_1 + x_2 + \cdots + x_m)^k$. It is given by

$$ \frac{k!}{t_1!\cdots t_m!} $$

if each $t_i$ is non-negative and $t_1 + \dots + t_m = k$ and $0$ otherwise.

A special case is the binomial coefficient ($m = 2$):

$$ \binom{n}{k} = \binom{n}{k,n-k}. $$

$\endgroup$
4
$\begingroup$

$${k\choose t_1, t_2, ... , t_m }=\frac{k!}{t_1! \ldots t_m!}$$

$\endgroup$
3
$\begingroup$

The multinomial coefficient is defined by $${k\choose t_1, t_2, ... , t_m }=\frac{k!}{t_1! \ldots t_m!}, \sum t_i = k.$$ Combinatorially, it counts the number of ways to partition a set of $k$ elements into equivalence classes $S_1,\dots, S_m$ where each $|S_i|=t_i$.

$\endgroup$
0
$\begingroup$

In addition to the formal definition of the multinomial coefficient as given in other answers posted, note also that $$\begin{align} \binom k{t_1, t_2,\cdots, t_m} &=\frac {k!}{t_1! t_2! \cdots t_m!}\\ &=\binom k{t_1}\binom {k-t_1}{t_2}\binom {k-t_1-t_2}{t_3}\cdots \binom {k-t_1-t_2-\cdots t_{m-1}}{t_m}\\ &=\binom k{t_1}\binom {k-t_1}{t_2}\binom {k-t_1-t_2}{t_3}\cdots \binom {t_m}{t_m}\\\end{align}$$ where $t_1+t_2+t_3+\cdots+t_m=k$.

Hence $$\begin{align} \binom {n+k}k \binom k{t_1, t_2,\cdots, t_m} &=\binom {n+k}n\binom k{t_1}\binom {k-t_1}{t_2}\binom {k-t_1-t_2}{t_3}\cdots \binom {t_m}{t_m}\\ &=\binom {n+k}{n,t_1, t_2,\cdots, t_m}\end{align}$$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.