Def.
$$ f: \; [-r, r]^3 \rightarrow \mathbb{R}, \; (x_1, x_2,x_3) \mapsto \begin{cases} \sqrt{r^2 - x_1^2 - x_2^2 - x_3^2}, & \text{for } x_1^2 + x_2^2 + x_3^2 \leq r^2, \\ 0, & \text{else}. \end{cases} $$
with $r > 0$.
I need to prove:
$$ \int_{-r}^r \int_{-r}^r \int_{-r}^r f(x_1, x_2, x_3) \mathrm{d}x_1 \mathrm{d}x_2 \mathrm{d}x_3 = \frac{\pi^2}{4}r^4. $$
I was able to solve the integral by first transforming $(x_1, x_2, x_3)$ into spherical coordinates $(p, \theta, \varphi)$ but I am still at the point in my studies where I do not know about coordinate transformations of integrals.
My question: Is there a way to calculate the integral without spherical coordinates or is there a simple proof such that I can do it in spherical coordinates?
What I did:
\begin{align} & \int_{-r}^r \int_{-r}^r \int_{-r}^r f(x_1, x_2, x_3) \mathrm{d}x_1 \mathrm{d}x_2 \mathrm{d}x_3 \\ =& \int_{0}^r \int_{0}^\pi \int_{-\pi}^\pi \sqrt{r^2-p^2} \cdot p^2\sin\theta\; \mathrm{d}\varphi \mathrm{d}\theta \mathrm{d}p \\ =& \dots \\ =& 4\pi \int_0^r \sqrt{r^2-p^2} \cdot p^2 \mathrm{d}p \\ =& \dots \\ =& 4\pi \left[ \frac{1}{8} \arcsin\frac{p}{r} - \frac{1}{8}\sin\left( 4\arcsin\frac{p}{r} \right) \right]_{p=0}^{p=r} \\ =& \frac{\pi^2}{4} r^4 \end{align}