8
$\begingroup$

I want to calculate the series of the Basel problem $\displaystyle{\sum_{n=1}^{\infty}\frac{1}{n^2}}$ by applying the Euler series transformation. With some effort I got that

$$\displaystyle{\frac{\zeta (2)}{2}=\sum_{n=1}^{\infty}\frac{H_n}{n2^n}}.$$

I know that series like the $\displaystyle{\sum_{n=1}^{\infty}\frac{H_n}{n2^n}}$ are evaluated here, but the evaluations end up with some values of the $\zeta$ function, like $\zeta (2),\zeta(3).$

First approach: Using the generating function of the harmonic numbers and integrating term by term, I concluded that

$$\displaystyle{\sum_{n=1}^{\infty}\frac{H_n}{n2^n}=\int_{0}^{\frac{1}{2}}\frac{\ln (1-x)}{x(x-1)}dx},$$

but I can't evaluate this integral with any real-analytic way.

First question: Do you have any hints or ideas to evaluate it with real-analytic methods?

Second approach: I used the fact that $\displaystyle{\frac{H_n}{n}=\sum_{k=1}^{n}\frac{1}{k(n+k)}}$ and then, I changed the order of summation to obtain

$$\displaystyle{\sum_{n=1}^{\infty}\frac{H_n}{n2^n}=\sum_{k=1}^{\infty}\frac{2^k}{k}\left(\sum_{m=2k}^{\infty}\frac{1}{m2^m}\right)}.$$

To proceed I need to evaluate the

$$\int_{0}^{\frac{1}{2}}\frac{x^{2k-1}}{1-x}dx,$$

since $\displaystyle{\sum_{m=2k}^{\infty}\frac{1}{m2^m}=\int_{0}^{\frac{1}{2}}\frac{x^{2k-1}}{1-x}dx}.$

Second question: How can I calculate this integral?

Thanks in advance for your help.

$\endgroup$
3
  • $\begingroup$ The last integral looks like the incomplete beta function (for $k >0$). $\endgroup$ Commented Jun 23, 2017 at 14:54
  • $\begingroup$ @ClaudeLeibovici Yes, it does. Can we find values of the incomplete beta function? $\endgroup$ Commented Jun 23, 2017 at 14:56
  • 1
    $\begingroup$ As far as I know (and I know little, be sure), there is no explicit formula for $B_{\frac{1}{2}}(2 k,0)$ $\endgroup$ Commented Jun 23, 2017 at 15:01

4 Answers 4

5
$\begingroup$

$$ \sum_{n\geq 1}\frac{H_{n-1}}{n}x^n = \frac{1}{2}\log(1-x)^2 \tag{1} $$ follows from the termwise integration of $\sum_{n\geq 1}H_n x^n = \frac{-\log(1-x)}{1-x}.$ It leads to $$ \sum_{n\geq 1}\frac{H_{n-1}}{n 2^n} = \frac{1}{2}\log^2(2).\tag{2}$$ On the other hand $$ \sum_{n\geq 1}\frac{1}{n^2 2^n} = \text{Li}_2\left(\frac{1}{2}\right)=\frac{\pi^2}{12}-\frac{\log^2(2)}{2}\tag{3} $$ follows from the dilogarithm reflection formula, and by summing $(2)$ and $(3)$ the identity we usually derive from Euler's acceleration method $$ \sum_{n\geq 1}\frac{H_n}{n 2^n} = \frac{\pi^2}{12}\tag{4} $$ easily follows.


Late addendum (2020). It is interesting to notice that $$ H_n = \gamma-\lim_{m\to 0^+} \frac{d}{dm}\left(\frac{1}{(n+1)_m}\right) \tag{5}$$ where $(n+1)_m$ is the rising Pochhammer symbol and $\gamma=-\Gamma'(1)$ is the Euler-Mascheroni constant.
We have $$\begin{eqnarray*} \sum_{n\geq 1}\frac{1}{n 2^n (n+1)_m}&=&\sum_{n\geq 1}\frac{1}{2^n(n)_{m+1}}=\sum_{n\geq 1}\frac{\Gamma(n)}{2^n \Gamma(n+m+1)}\\&=&\frac{1}{\Gamma(m+1)}\sum_{n\geq 1}\frac{B(n,m+1)}{2^n}\\&=&\frac{1}{\Gamma(m+1)}\int_{0}^{1}\sum_{n\geq 1}\frac{(1-x)^m x^{n-1}}{2^n}\,dx\\&=&\frac{1}{\Gamma(m+1)}\int_{0}^{1}\frac{(1-x)^m}{2-x}\,dx\\&=&\frac{1}{\Gamma(m+1)}\int_{0}^{1}\frac{x^m}{1+x}\,dx\end{eqnarray*} \tag{6}$$ hence by the chain rule and differentiation under the integral sign $$\begin{eqnarray*} \sum_{n\geq 1}\frac{H_n}{n 2^n}&=&\gamma\log(2)-\gamma\int_{0}^{1}\frac{dx}{1+x}-\int_{0}^{1}\frac{\log(x)}{1+x}\,dx\\&=&\int_{0}^{1}-\log(x)\sum_{n\geq 0}(-1)^{n} x^n\,dx=\sum_{n\geq 0}\frac{(-1)^n}{(n+1)^2}\\&=&\sum_{n\geq 1}\frac{(-1)^{n+1}}{n^2}=\zeta(2)-2\sum_{n\geq 1}\frac{1}{(2n)^2}=\left(1-\frac{1}{2}\right)\zeta(2)=\color{red}{\frac{\pi^2}{12}}\end{eqnarray*} \tag{7}$$ "undoing" Euler acceleration method.

$\endgroup$
6
  • $\begingroup$ Yes, but the dilogarithm reflection formula, in your proof, uses the fact that $\displaystyle{\zeta (2)=\frac{{\pi}^2}{6}}.$ Am I wright? I ended up with this series when I was trying to compute $\zeta(2)$ with a certain method. $\endgroup$ Commented Jun 23, 2017 at 15:14
  • $\begingroup$ @SachpazisStelios: correct. Have a look at this thread (math.stackexchange.com/questions/8337/…) for proving $\zeta(2)=\frac{\pi^2}{6}$. $\endgroup$ Commented Jun 23, 2017 at 15:19
  • 1
    $\begingroup$ Is $\text{Li}_2$ really 'real analytic'? Invoking the polylogarithm feels like cheating the 'elementary way' a bit, indirectly invoking Riemann's zeta. $\endgroup$ Commented Jun 23, 2017 at 15:21
  • $\begingroup$ @Jack D'Aurizio I knew this amazing thread. Do you remember if there is anyone in this thread, trying to evaluate $\zeta(2)$, like I did? $\endgroup$ Commented Jun 23, 2017 at 15:22
  • $\begingroup$ @SachpazisStelios: not through the series you want to use, but I showed (and Euler well before me) that by accelerating $\sum_{n\geq 1}\frac{1}{n^2}$ as $\sum_{n\geq 1}\frac{3}{n^2\binom{2n}{n}}$ by creative telescoping, the value of $\zeta(2)$ depends on $\arcsin\left(\frac{1}{2}\right)^2$. $\endgroup$ Commented Jun 23, 2017 at 15:30
2
$\begingroup$

\begin{align} \sum_{n=1}^{\infty}\frac{H_n}{2^n n}&=\sum_{n=1}^{\infty}\frac{H_n}{2^n}\int_o^1 x^{n-1}\ dx=\int_0^1\frac{1}{x}\sum_{n=1}^{\infty}\left(\frac x2\right)^nH_n\ dx\\ &=-\int_{0}^{1}\frac{\ln(1-x/2)}{x(1-x/2)}\ dx\overset{x\mapsto2x}{=}-\int_{0}^{1/2}\frac{\ln(1-x)}{x(1-x)}\ dx\\ &=-\int_{0}^{1/2}\frac{\ln(1-x)}{x}\ dx-\int_{0}^{1/2}\frac{\ln(1-x)}{1-x}\ dx\\ &= \operatorname{Li_2}(1/2)+\frac12\ln^22=\frac12\zeta(2)-\frac12\ln^22+\frac12\ln^22=\frac12\zeta(2) \end{align}

$\endgroup$
4
  • $\begingroup$ If you read carefully my question, I proved this. Now, why $\zeta(2)=\frac{{\pi}^2}{6}$ by elementary methods? I want to calculate the series in an other way, to prove that $\zeta(2)=\frac{{\pi}^2}{6}$. $\endgroup$ Commented Apr 26, 2019 at 18:42
  • $\begingroup$ @Stelios Sachpazis sorry didnt pay attention to that. I submitted a proof to your inquiry. $\endgroup$ Commented Oct 24, 2019 at 5:35
  • $\begingroup$ +1. At the end of the first line: $\displaystyle\left(1 \over 2\right)^{n}$ must be $\displaystyle\left(\color{red}{\large x} \over 2\right)^{n}$. Otherwise, everything is fine. $\endgroup$ Commented Jul 27, 2020 at 2:46
  • $\begingroup$ Thank you @Felix Martin $\endgroup$ Commented Jul 27, 2020 at 5:54
1
$\begingroup$

I found the proof that $\zeta(2)=\frac{\pi^2}{6}$ on YouTube but I did little changes:

\begin{align} I&=\int_0^{\pi/2}\ln(2\cos x)\ dx=\int_0^{\pi/2}\ln\left(e^{ix}(1+e^{-2ix})\right)\ dx\\ &=\int_0^{\pi/2}ix\ dx-\sum_{n=1}^\infty \frac{(-1)^n}{n}\int_0^{\pi/2}e^{-2ix}\ dx\\ &=\frac{\pi^2}{8}i-\sum_{n=1}^\infty\frac{(-1)^n}{n}\left(-\frac{(-1)^n-1}{2in}\right)\\ &=\frac{\pi^2}{8}i-\frac12i\left(\zeta(2)-\operatorname{Li}_2(-1)\right)\\ &=\frac{\pi^2}{8}i-\frac12i\left(\zeta(2)+\frac12\zeta(2)\right)\\ &=i\left(\frac{\pi^2}{8}-\frac34\zeta(2)\right) \end{align}

By comparing the imaginary parts, we have

$$0=\frac{\pi^2}{8}-\frac34\zeta(2)\Longrightarrow\zeta(2)=\frac{\pi^2}{6}$$

$\endgroup$
1
  • $\begingroup$ This also provides a second way of calculating the integral $\int_{0}^{\pi/2}\ln (2\cos x)dx.$ $\endgroup$ Commented Feb 24, 2020 at 14:08
1
$\begingroup$

\begin{align}J&=\int_{0}^{\frac{1}{2}}\frac{\ln (1-x)}{x(x-1)}dx\\ &\overset{x=\frac{y}{1+y}}=\int_0^1 \frac{\ln(1+y)}{y}\,dy\\ &=\int_0^1 \frac{\ln(1-y^2)}{y}\,dy-\int_0^1 \frac{\ln(1-t)}{t}\,dt\\ &\overset{u=y^2}=\frac{1}{2}\int_0^1 \frac{\ln(1-u)}{u}\,du-\int_0^1 \frac{\ln(1-t)}{t}\,dt\\ &=-\frac{1}{2}\int_0^1 \frac{\ln(1-u)}{u}\,du\\ &\overset{w=1-u}=-\frac{1}{2}\int_0^1 \frac{\ln w}{1-w}\,dw\\ &=-\frac{1}{2}\times -\frac{\pi^2}{6}\\ &=\boxed{\frac{\pi^2}{12}} \end{align}

NB: i assume that:

$\displaystyle \int_0^1 \frac{\ln x}{1-x}\,dx=-\zeta(2)=-\frac{\pi^2}{6}$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.