In how many ways can we select $4$ disjoint subsets of the set $\{1,2,\ldots,10\}$?
OK for subsets of 1 element each, there are 10C4 subsets. For subsets of $2$ elements each, there are $$\binom{10}{2}\cdot\binom{8}{2}\cdot\binom{6}{2}\cdot\binom{4}{2}$$ Then we have subsets of $3+3+3+1$: $\binom{10}{3}\cdot\binom{7}{3}\cdot\binom{4}{3}$
Also: $$ \begin{array}{cc} 1+1+1+2,&1+1+1+3,\\ 1+1+2+2,&1+2+2+2,\\ 1+1+2+3,&1+2+2+3,\\ 2+2+2+3,&1+2+3+3,\\ 2+2+3+3,&1+3+3+3,\\ 1+1+3+3,&1+2+2+2 \end{array} $$
Plus the empty subset?
And at the end we multiply all these numbers?