The most important propety of the 2-dimensional Dirac delta is
$$ \int_{\mathbb{R}^2} d^2 y\, \delta^{(2)}(x-y)\, f(y) = f(x) $$
where $f(y)$ is some test-function.
Let's take a ball $B_r$ centered in $x$ with radius $r$ such that $\mathbb{R}^2 = \lim_{r\rightarrow +\infty} B_r$.
I want to know if the following statements are true
1) $\lim_{r\rightarrow 0} \mathbb{R}^2 \setminus B_r = \mathbb{R}^2$ where this limit is meant in terms of domain of integration. The analogous of what I mean in a one-dimensional space is $B_{r} =(x-r/2,x+r/2)$ and $ \mathbb{R}\setminus B_r = (-\infty,x-r/2] \cup [x+r/2,+\infty)$ and $\lim_{r\rightarrow 0} \mathbb{R} \setminus B_r = (-\infty,+\infty)$
2)
$$ \lim_{r\rightarrow 0^+} \int_{\mathbb{R}^\infty\setminus B_r} d^2 y\, \delta^{(2)}(x-y) = 1. $$
If this is not true, is there a way to regularize this integral in order to be this limit well-defined?