I'm trying to calculate the following integral :$\int \sqrt x (2-3x^2)^2dx$, but somehow I can't get it right, here's what I did:
First I expanded the expression:
\begin{align}&\int \sqrt x (4-12x^2 + 9x^4) \\&= \int(4\sqrt x-12x^2\sqrt x + 9x^4\sqrt x) \end{align}
Then I evaluated each term individually:
\begin{align}&4 \int \sqrt x - 12 \int x ^\frac{5}{2} + 9 \int x^\frac{9}{2} \\& = \frac{4x^\frac{3}{2} \cdot 2}{3} - \frac{12x^\frac{7}{2} \cdot 2}{7} + \frac{9x^\frac{11}{2} \cdot 2}{11}\end{align}
Which gives
$$\frac{8x^\frac{3}{2}}{3} - \frac{24x^\frac{7}{2}}{7} + \frac{18x^\frac{11}{2}}{11}$$
What's wrong with my solution?