6
$\begingroup$

Denote the sorted eigenvalues of an $n\times n$ matrix $C$ as $\lambda_1(C)\leq\dots\leq\lambda_n(C)$.

I want to show that the following statement holds for all $i=1,\dots,n$

If $A,B$ Hermitian and $A-B$ has only nonnegative eigenvalues, show that $\lambda_i(A)\geq\lambda_i(B)$

Let me state Weyl's Theorem (Thm. 4.3.1 in Horn and Johnson's Matrix Analysis book)

Let $A,B\in\mathbb{C}^{n\times n}$ be Hermitian and let the respective eigenvalues of $A$, $B$, and $A+B$ be $\{\lambda_i(A)\}_{i=1}^n$, $\{\lambda_i(B)\}_{i=1}^n$, and $\{\lambda_i(A+B)\}_{i=1}^n$, each algebraicly ordered as explained above (i.e. $\lambda_1(\dots)\leq\dots\leq\lambda_n(\dots)$). Then $$\lambda_i(A+B)\leq\lambda_{i+j}(A)+\lambda_{n-j}(B),\qquad j=0,\dots,n-i$$ for each $i=1,\dots,n$. Also, $$\lambda_{i-j+1}(A)+\lambda_{j}(B)\leq\lambda_i(A+B),\qquad j=1,\dots,i$$ for each $i=1,\dots,n$.

Let $\lambda_1'(B')\leq\dots\leq\lambda_n'(B')$ denote the sorted eigenvalues of $B'=-B$.

First, since $B$ Hermitian, then $B'$ is also Hermitian and if $(\lambda, \mathbf{x})$ is an eigenpair of $B$, then $(-\lambda, \mathbf{x})$ is an eigenpair of $B'$. Hence, if $\lambda_1(B)\leq\dots\leq\lambda_n(B)$ are the sorted eigenvalues of $B$, then $\lambda_1'(B')=-\lambda_n(B)\leq\dots\leq\lambda_n'(B')=-\lambda_1(B)$ are the sorted eigenvalues of $B'$.

Let's apply the first part of the theorem for matrices $A,B'$ for $j=0$ \begin{eqnarray*} \lambda_i(A+B')\leq\lambda_{i+j}(A)+\lambda_{n-j}'(B')&\Rightarrow&\lambda_{i}(A)+\lambda_{n}'(B')\geq\lambda_i(A+B')\\ &\Rightarrow&\lambda_{i}(A)+\lambda_{n}'(B')\geq0\qquad (A-B\text{ has nonnegative eigenvalues})\\ &\Rightarrow&\lambda_{i}(A)+\lambda_{n}'(-B)\geq0\\ &\Rightarrow&\lambda_{i}(A)-\lambda_{1}(B)\geq0\\ &\Rightarrow&\lambda_{i}(A)\geq\lambda_{1}(B) \end{eqnarray*}

But, this only shows that $\lambda_{1}(A)\geq\lambda_{1}(B)$ and I need $\lambda_{i}(A)\geq\lambda_{i}(B)$ for all values of $i$. What else can I do? I think I need to show that $\lambda_{1}(A)\geq\lambda_{n}(B)$ which would be enough.

$\endgroup$
2
  • 2
    $\begingroup$ It is straightforward if you use en.wikipedia.org/wiki/Min-max_theorem $\endgroup$ Commented Mar 29, 2018 at 8:40
  • $\begingroup$ Generalizing your work, $$\lambda_{i+j}(A)+\lambda_{n-j}'(B)\geq\lambda_i(A+B')\geq 0\implies \lambda_{i+j}(A)-\lambda_{j+1}(B)\geq 0\implies\lambda_{i+j}(A)\geq\lambda_{j+1}(B)$$ Now, let $i=1$ and let $0\leq j\leq n-i=n-1$ to get the desired result. $\endgroup$ Commented Mar 29, 2018 at 9:59

1 Answer 1

3
$\begingroup$

Put $j=i$ in the inequality $$ \lambda_{i-j+1}(A)+\lambda_{j}(B)\leq\lambda_i(A+B),\qquad j=1,\dots,i, $$ we get $\lambda_1(X)+\lambda_i(Y)\leq\lambda_i(X+Y)$ for any two Hermitian matrices $X$ and $Y$. Now, put $X=A-B$ and $Y=B$ and we are done.

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.