1
$\begingroup$

This is actually a question arising from statistics, regarding the proof of the Cramér–Rao inequality. The problem is only about measure-theory, though.

Let $T: (\mathcal{X}, \mathcal{F}) \rightarrow \bigl(\mathbb{R}, \mathcal{B}(\mathbb{R})\bigr)$ be a measurable function with $\mathcal{X} \subset \mathbb{R}$ a Borel set and $\mathcal{F}$ the Borel-sigma-algebra restricted on $\mathcal{X}$. Let $f: \mathcal{X}\times \Theta \rightarrow \mathbb{R}$ be also an $(\mathcal{X}, \mathcal{F})$-$\bigl(\mathbb{R}, \mathcal{B}(\mathbb{R})\bigr)$-measurable function for any fixed $\vartheta$ in an open real interval $\Theta$ and continuous for $\vartheta$.

In one step of the proof the textbook, with no explanation, claims that we can conclude from the set $$ N_\vartheta = \{x \in \mathcal{X} : T(x) \not= f(x,\vartheta)\}$$ having Lebesgue-measure zero for all $\vartheta$: $$\lambda(N_\vartheta)= 0 \quad \forall \vartheta \in \Theta$$ the following result: $$\lambda\bigl(\bigcup_{\vartheta \in \Theta}N_\vartheta\bigr)=0\,.$$


Question: If we want to fill in the intermediate steps, would the following be correct:

If $T(x) \not= f(x,\vartheta)$ for an $x\in\mathcal{X}$ and a $\vartheta\in\Theta$, define $$\varepsilon := |f(x,\vartheta)-T(x)|>0\,,$$ because $f(x,\vartheta)$ is continuous in $\vartheta$ there exists a $\delta >0$ so that $$|f(x,\vartheta)-f(x,\tilde{\vartheta})| < \varepsilon $$ for all $\tilde{\vartheta}$ with $|\vartheta - \tilde{\vartheta}| < \delta$. So choose a rational $\vartheta_0 \in ]\vartheta-\delta,\vartheta+\delta[ \cap\mathbb{Q}$.

For $\vartheta_0$ it must hold that $$|f(x,\vartheta)-f(x,\vartheta_0)| < \varepsilon = |f(x,\vartheta)-T(x)| \Rightarrow f(x,\vartheta_0) \neq T(x)\,.$$

So for any $\vartheta \in \Theta$ and any $x\in\mathcal{X}$ with $x\in N_\vartheta,$ we can find a $\vartheta_0\in\Theta\cap\mathbb{Q}$ with $x\in N_{\vartheta_0}$. This means that $$\bigcup_{\vartheta\in\Theta} N_\vartheta = \bigcup_{\vartheta \in \Theta \cap \mathbb{Q}} N_\vartheta \,.$$

Since $\lambda (N_\vartheta) = 0$ for all $\vartheta \in\Theta$, it follows with countable additivity of the Lebesgue-measure: $$\lambda\bigl(\bigcup_{\vartheta\in\Theta} N_\vartheta \bigr)= \lambda\bigl(\bigcup_{\vartheta \in \Theta \cap \mathbb{Q}} N_\vartheta\bigr) \leq \sum_{\vartheta\in\Theta\cap\mathbb{Q}} \lambda(N_\vartheta)= 0\,.$$

Could somebody please check that? Thanks.

$\endgroup$

0

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.