1
$\begingroup$

Possible Duplicate:
Prove $f(S \cup T) = f(S) \cup f(T)$

I'm revisiting set theory and am troubled by this question.

Let $f:A \rightarrow B$, and $C \subset A$, $D \subset A$.

Prove that $f(C \cup D) = f(C) \cup f(D)$.

Any thoughts?

$\endgroup$
2
  • $\begingroup$ The tag elementary-functions is for questions about elementary functions, not about functions in general. $\endgroup$ Commented Jan 24, 2013 at 7:20
  • $\begingroup$ sorry about the duplicate, thanks for the heads up $\endgroup$ Commented Jan 24, 2013 at 17:50

2 Answers 2

3
$\begingroup$

I'll show $\subseteq$. Let $y\in f(C\cup D)$. Then there exists an $x\in C\cup D$ such that $f(x)=y$. This means $x\in C$ or $x\in D$, hence $f(x)\in f(C)$ or $f(x)\in f(D)$. This implies $f(x)\in f(C)\cup f(D)$ and we've established $$f(C\cup D)\subseteq f(C)\cup f(D).$$ Approach the other containment in a similar manner.

$\endgroup$
0
1
$\begingroup$

if $f : A \to B$ and $E \subset A$ then by definition $\{ f(e) \in B | e \in E \}$.

So you want to prove

$$\{ f(e) \in B | e \in C \cap D \} = \{ f(e) \in B | e \in C \} \cap \{ f(e) \in B | e \in D \}$$

so

$$\{ f(e) \in B | e \in C \cap D \} = \{ f(e) \in B | e \in C \& e \in D \}$$

done

$\endgroup$

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.