1
$\begingroup$
  • I have to integrate $\mathrm{f}\left(x,y\right) \equiv x^{2} + y^{2}$ over a triangular region with vertices $\left(0,0\right), \left(1,0\right)\ \mbox{and}\ \left(0,1\right)$.
  • For my upper bound when integrating in respect to $y$, I got $1 - 1x$. Is this correct, and wouldn't this be the upper bound when integrating in respect to x as well ?.
$\endgroup$
1

1 Answer 1

1
$\begingroup$

$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} &\bbox[10px,#ffd]{\int_{0}^{1}\int_{0}^{1 - y}\pars{x^{2} + y^{2}} \dd x\,\dd y} = \int_{0}^{1}\pars{{1 \over 3} -y + 2y^{2} - {4 \over 3}\,y^{3}}\dd y = \bbx{1 \over 6} \end{align}


Another way: \begin{align} &\bbox[10px,#ffd]{\int_{0}^{1}\int_{0}^{1}\bracks{x + y < 1} \pars{x^{2} + y^{2}}\dd x\,\dd y} = 2\int_{0}^{1}\int_{0}^{1}\bracks{x + y < 1}x^{2}\,\dd x\,\dd y \\[5mm] = &\ 2\int_{0}^{1}\int_{0}^{1 - y}x^{2}\,\dd x\,\dd y = 2\int_{0}^{1}\int_{0}^{y}x^{2}\,\dd x\,\dd y = 2\int_{0}^{1}{y^{3} \over 3}\,\dd y \\[5mm] = &\ {2 \over 3}\times {1 \over 4} = \bbx{1 \over 6} \end{align}

$\endgroup$
2
  • $\begingroup$ Yeah, I had gotten that answer after I read over my textbook and attempted to answer the question once more. Thanks! $\endgroup$ Commented Mar 28, 2019 at 21:28
  • $\begingroup$ @Uchuuko You're welcome. $\endgroup$ Commented Mar 28, 2019 at 21:32

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.