Check convergence of integral: $$ \int_{0}^{1} \frac{dx}{|\sin{x}|^{1/2}} $$
My attempt
Dirichlet's test would't help there so I am going to use comparison test:
$$ x \ge \sin{x} \\ \frac{1}{x} \le \frac{1}{\sin{x}} \\ \frac{1}{|x|} \le \frac{1}{|\sin{x}|} \\ \frac{1}{|x|^{1/2}} \le \frac{1}{|\sin{x}|^{1/2}}$$ So
$$ \int_{0}^{1} \frac{dx}{|\sin{x}|^{1/2}} \ge \int_{0}^{1} \frac{1}{|x|^{1/2}} $$ But $\int_{0}^{1} \frac{1}{|x|^{1/2}}$ converges so it doesn't help me.