Theorem: Let $a_{n}=a_{n-1}+1, a_1=1$. For any $n$, in order to compute $a_n$, it is necessary to compute $a_i$ for each $i=1,\dots,n-1$, which takes $\Theta(n)$ time.
Proof: This is vacuously true for $n=1$. Assume true for $n=k-1$. Prove true for $n=k$. In order to compute $a_{k-1}+1$, it is necessary to compute $a_{k-1}$. Then since $a_k=a_{k-1}+1$, in order to compute $a_k$, it is necessary to compute $a_{k-1}$. By the induction hypothesis, in order to compute $a_{k-1}$, it is necessary to compute $a_i$ for each $i=1,\dots,k-2$. Hence, in order to compute $a_k$, it is necessary to compute $a_i$ for each $i=1\dots,k-1$. QED
What is wrong with this proof? It seems valid to me, even though the theorem is false.