0
$\begingroup$

Given these questions to solve on 2nd order non homogeneous equation. I'm having problem of forming the particular solution of it: $$ \frac{d^2x}{dt^2} \,+4x=289te^t\,sin2t $$ $$ 2x\ddot y\,+\,\dot y \,-\,2y=0 $$ For the first equation, I got the homogeneous equation to be: $ y_c=C_1e^{2it} \,+C_2e^{-2it}$ after forming the particular equation $$ (A+Bt) e^t \sin2t + (C+Dt) e^t\cos2t $$ I applied method of undetermined coefficient but I got incorrect answer Any idea of forming a better solution even without using method of undetermined coefficient

$\endgroup$
2
  • $\begingroup$ @LutzL no the correct one is the latter ${\rm e} $\endgroup$ Commented Jul 23, 2019 at 12:26
  • $\begingroup$ @nmasanta its$$e^t not \, \ell^t$$ $\endgroup$ Commented Jul 26, 2019 at 7:56

2 Answers 2

1
$\begingroup$

First equation, undetermined coefficients requires to see that the right side is not in resonance with the left side, thus the standard construct applies $$ x_p(t)=(A+Bt)e^t\sin(2t)+(C+Dt)e^t\cos(2t). $$

For the second equation the power series approach is called Frobenius method. The Euler-Cauchy part of the equation is $2x^2\ddot y+x\dot y=0$, so that the indicial equation $0=2m(m-1)+m=m(2m-1)$ gives basis solutions $1$ and $\sqrt x$, the power series are thus $$ y_1(x)=\sum_ka_kx^k~~\text{ and }~~y_2(t)=\sqrt x\sum_k b_kx^k. $$ Inserting and comparing coefficients should give the coefficient recursion for both.


Setting $y(x)=\sum a_kx^{k+r}$ with $y'(x)=\sum (k+r)a_kx^{k+r-1}$ and $y''(x)=\sum (k+r)(k+r-1)a_kx^{k+r-2}$ gives after comparing coefficients of equal degree terms $$ 2(k+r)(k+r-1)a_k+(k+r)a_k-2a_{k-1}=0\\~\\ (k+r)(k+r-\tfrac12)a_k=a_{k-1} $$ With $a_{-1}=0$ a non-trivial $a_0$ is only obtained for $r=0$ and $r=\frac12$. Then iterate \begin{align} r&=0:& a_k&=\frac{a_{k-1}}{k(k-\frac12)}&\implies~~&a_k=\frac{2^k}{(2k)!}a_0\\ r&=\tfrac12:&a_k&=\frac{a_{k-1}}{k(k+\frac12)}&\implies~~&a_k=\frac{2^k}{(2k+1)!}a_0 \end{align} Now compare with the power series of the hyperbolic functions.

$\endgroup$
1
  • $\begingroup$ I appreciate your response 😊 but a small elaboration of the power series (frobenius method) would do $\endgroup$ Commented Jul 23, 2019 at 23:55
1
$\begingroup$

Given differential equation is $$\frac{d^2x}{dt^2} \,+4x=289~t~e^t~\sin2t\implies (D^2+4)x=289~t~e^t~\sin2t\qquad \text{where }\quad D\equiv \frac{d}{dt}$$

Roots of the trial solution are $~\pm 2i~$, so the complementary function (C.F.) is $$a~\cos(2t)+b~\sin(2t)\qquad $$where $~a,~b~$ are independent constants.

Now the particular integral (P.I.) is

P.I. $~=\frac{1}{D^2+4}289~t~e^t~\sin2t$

$~~~~~~~= 289~e^t~\frac{1}{(D+1)^2+4}t~\sin2t$

$~~~~~~~= 289~e^t~\frac{1}{D^2+2D+5}t~\sin2t$

$~~~~~~~= 289~e^t~\left(\text{imaginary part of}\left\{~\frac{1}{D^2+2D+5}t~e^{2it}\right\}\right)$

$~~~~~~~= 289~e^t~\left(\text{imaginary part of}\left\{~e^{2it}~\frac{1}{(D+2i)^2+2(D+2i)+5}t~\right\}\right)$

$~~~~~~~= 289~e^t~\left(\text{imaginary part of}\left\{~e^{2it}~\frac{1}{D^2+(2+4i)D+(1+4i)}t~\right\}\right)$

$~~~~~~~= 289~e^t~\left(\text{imaginary part of}\left\{~\frac{e^{2it}}{1+4i}~\left(1-\frac{2+4i}{1+4i}~D+\cdots\right)t~\right\}\right)$

$~~~~~~~= 289~e^t~\left(\text{imaginary part of}\left\{~\frac{e^{2it}}{1+4i}~\left(t-\frac{2+4i}{1+4i}\right)~\right\}\right)$

$~~~~~~~= 289~e^t~\left(\text{imaginary part of}\left\{~\frac{1-4i}{17}~(\cos~2t+i\sin~2t)~\left(t-\frac{18-4i}{17}\right)~\right\}\right)$

$~~~~~~~= 289~e^t~\left(\text{imaginary part of}\left\{~\frac{1}{17}~[(\cos~2t+4\sin~2t)+i(\sin 2t-4\cos 2t)]~\left(t-\frac{18-4i}{17}\right)~\right\}\right)$

$~~~~~~~= 289~e^t~\left(~\frac{4}{17^2}~(\cos~2t+4\sin~2t)+\frac{1}{17}~(\sin 2t-4\cos 2t)~\left(t-\frac{18}{17}\right)~\right)$

$~~~~~~~= ~e^t~\{~4~(\cos~2t+4\sin~2t)+~(\sin 2t-4\cos 2t)~\left(17~t-18\right)~\}$

So the general solution is

$$x(t)=C.F. + P.I.$$

$$x(t)=a~\cos(2t)+b~\sin(2t)+~e^t~\{~4~(\cos~2t+4\sin~2t)+~(\sin 2t-4\cos 2t)~\left(17~t-18\right)~\}$$where $~a,~b~$ are independent constants.


For the Particular Integral (i.e., P.I.) there are some general rules

$1.$ $\frac{1}{D + a} \phi (x) = e^{-ax}\int e^{ax}\phi(x)$

$2.$ $\frac{1}{f(D)} e^{ax} \phi(x) = e^{ax}\frac{1}{f(D+a)} \phi(x)$

$3.$ $\frac{1}{f(D)} x^{n} \sin ax = $Imaginary part of $e^{iax}\frac{1}{f(D+ia)} x^n$

$4.$ $\frac{1}{f(D)} x^{n} \cos ax = $Real part of $e^{iax}\frac{1}{f(D+ia)} x^n$

$5.$ $\frac{1}{f(D)} x^{n} (\cos ax + i\sin ax) = \frac{1}{f(D)} x^n e^{iax}=e^{iax}\frac{1}{f(D+ia)} x^n$

$\endgroup$
5
  • $\begingroup$ Which method is this? Undetermined coefficient or variation of constant $\endgroup$ Commented Jul 27, 2019 at 1:33
  • $\begingroup$ Second order ordinary differential equation with constant coefficient C.F + P.I. method $\endgroup$ Commented Jul 27, 2019 at 1:43
  • $\begingroup$ I find this solution of yours totally different. Can you recommend a link for me to use, like a tutorial video $\endgroup$ Commented Jul 27, 2019 at 1:45
  • $\begingroup$ "Introductory Course in Differential Equations" by Daniel Alexander Murray (Chapter VI) $\endgroup$ Commented Jul 27, 2019 at 1:55
  • $\begingroup$ Also you can see my solutions on this site regarding "ordinary differential equation". math.stackexchange.com/… $\endgroup$ Commented Jul 27, 2019 at 1:58

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.