4
$\begingroup$

I would like to know how to evaluate the following triple integral with the help of spherical coordinates

$$\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \sqrt{{x^2+y^2+z^2}} \,dx \,dy\, dz$$

The relations between Cartesian coordinates and spherical ones are given by

${\displaystyle {\begin{aligned}x&=r\,\sin \theta \,\cos \varphi \\y&=r\,\sin \theta \,\sin \varphi \\z&=r\,\cos \theta \end{aligned}}}$

I know that a function is generally integrated over $\mathbb{R}^3$ by the following triple integral

$$ \ \int \limits _{\varphi =0}^{2\pi }\ \int \limits _{\theta =0}^{\pi }\ \int \limits _{r=0}^{\infty }f(r,\theta ,\varphi )r^{2}\sin \theta \,\mathrm {d} r\,\mathrm {d} \theta \,\mathrm {d} \varphi .$$

I found a numerical solution with Wolfram Alpha (0.960592), I tried to change the bounds of integration from Cartesian to spherical but I got a different numerical value.

Could someone please give a detailed solution showing how to change the limits of integration?

Thanks.

$\endgroup$
7
  • 3
    $\begingroup$ You are trying to integrate over a cube using spherical coordinates $\endgroup$ Commented Aug 26, 2019 at 21:30
  • $\begingroup$ I thought it is not difficult in spherical coordinates because $r={\sqrt {x^{2}+y^{2}+z^{2}}}$. But I'm not sure about the new bounds of integration. $\endgroup$ Commented Aug 26, 2019 at 21:37
  • $\begingroup$ How would you describe a cube in spherical coordinates? Let's answer a more simple question: how do you describe a square in polar coordinates? $\endgroup$ Commented Aug 26, 2019 at 21:38
  • $\begingroup$ @YuriyS so it would be better to solve it in Cartesian coordinates? Are cylindrical coordinates useful here perhaps or not? $\endgroup$ Commented Aug 26, 2019 at 21:43
  • $\begingroup$ I would integrate w.r.t. one coordinate in Cartesian and then maybe go to polar, since it's easier to deal with a square in polar than cube in spherical $\endgroup$ Commented Aug 26, 2019 at 21:44

3 Answers 3

6
$\begingroup$

Split up the cube into $6$ tetrahedral chunks. One such tetrahedron has vertices $\{(0,0,0),(0,0,1),(1,0,1),(1,1,1)\}$ and is enclosed by the planes $y=0$, $z=1$, $y=x$, and $z=x$:

$$\begin{align*} I_1 &= \int_0^\tfrac\pi4\int_0^{\arctan(\sec\theta)}\int_0^{\sec\varphi} \rho^3\sin\varphi \,\mathrm d\rho\,\mathrm d\varphi\,\mathrm d\theta \\ &= \frac14 \int_0^\tfrac\pi4 \int_0^{\arctan(\sec\theta)} \tan\varphi \sec^3\varphi \, d\varphi \, d\theta \\ &= \frac14 \int_0^\tfrac\pi4 \int_1^{\sqrt{1+\sec^2\theta}} f^2 \, df \, d\theta & f=\sec\varphi \\ &= \frac1{12} \int_0^\tfrac\pi4 \left(2+\tan^2\theta\right)^{3/2} \,d\theta - \frac\pi{48} \\ &= \frac13 \int_0^{\operatorname{arcsch}\sqrt2} \frac{\cosh^4u}{\cosh(2u)} \, du - \frac\pi{48} & \tan\theta = \sqrt2\,\sinh u \\ &= \frac{4\operatorname{arcsch}\sqrt2 - \pi}{48} + \frac1{12} \int_0^{\operatorname{arcsch}\sqrt2} \left(2\cosh^2u + \frac{1}{2\cosh^2u-1}\right) \, du & \text{partial fractions} \\ &= \frac{2\sqrt3 + 8\operatorname{arcsch}\sqrt2 - \pi}{48} + \frac1{12} \int_0^{\operatorname{arcsch}\sqrt2} \frac{\operatorname{sech}^2u}{1+\tanh^2u} \, du \\ &= \frac{6\sqrt3 + 24\operatorname{arcsch}\sqrt2 - \pi}{144} \end{align*}$$

By symmetry, the remaining integrals $I_2$ through $I_5$ (listed below) share the same value as $I_1$, and the closed form for OP's integral follows.

$$\begin{array}{l|l|l} i & \text{vertices} & \text{integration range} \\ \hline 2 & \{(0,0,0),(1,0,0),(1,0,1),(1,1,1)\} & \displaystyle \int_0^\tfrac\pi4 \int_{\arctan(\sec\theta)}^{\arctan(\csc\theta)} \int_0^{\sec\theta\csc\varphi} \\ 3 & \{(0,0,0),(1,0,0),(1,1,0),(1,1,1)\} & \displaystyle \int_0^\tfrac\pi4 \int_{\arctan(\csc\theta)}^\tfrac\pi2 \int_0^{\sec\theta\csc\varphi}\\ 4 & \{(0,0,0),(0,1,0),(1,1,0),(1,1,1)\} & \displaystyle\int_\tfrac\pi4^\tfrac\pi2\int_{\arctan(\sec\theta)}^\tfrac\pi2\int_0^{\csc\theta\csc\varphi} \\ 5 & \{(0,0,0),(0,1,0),(0,1,1),(1,1,1)\} & \displaystyle\int_\tfrac\pi4^\tfrac\pi2\int_{\arctan(\csc\theta)}^{\arctan(\sec\theta)}\int_0^{\csc\theta\csc\varphi} \\ 6 & \{(0,0,0),(0,0,1),(1,1,0),(1,1,1)\} & \displaystyle\int_\tfrac\pi4^\tfrac\pi2\int_0^{\arctan(\csc\theta)}\int_0^{\sec\varphi} \end{array}$$

Replacing $\theta$ by $\dfrac\pi2-\theta$ reveals $I_{1,2,3}$ are respectively duplicated by $I_{6,5,4}$. Fubini's theorem $(\star)$ can in turn be used to express $I_{1,2,3}$ in terms of a common integral.

$$\begin{align*} 4I_1 &= \int_0^\tfrac\pi4 \int_0^{\arctan(\sec\theta)} \sec^4\varphi \sin\varphi \, d\varphi \, d\theta \\ &= \int_0^\tfrac\pi4 \int_0^1 f\sec^2\theta\sqrt{1+f^2\sec^2\theta} \, df \, d\theta & f=\cos\theta\tan\varphi \\ &= \underbrace{\int_0^1 \int_0^1 f\sqrt{1+f^2\left(1+t^2\right)} \, df \, dt}_{\mathcal I} & t=\tan\theta \\[2ex] 4I_3 &= \int_0^\tfrac\pi4 \int_{\arctan(\csc\theta)}^\tfrac\pi2 \sec^4\theta \csc^3\varphi \, d\varphi \, d\theta \\ &= \int_0^\tfrac\pi4 \int_0^1 \sec^4\theta\sin\varphi\sqrt{1+f^2\sin^2\theta} \, df \, d\theta & f=\sin\theta\cot\varphi \\ &= \int_0^1 \int_0^1 t \sqrt{1+t^2\left(1+f^2\right)} \, df \, dt & t=\tan\theta \\ &= \int_0^1 \int_0^t \sqrt{1+f^2+t^2} \, df \, dt & f\to\frac ft \\ &= \int_0^1 \int_f^1 \sqrt{1+f^2+t^2} \, dt \, df & (\star) \\ &= \int_0^1 \int_1^\tfrac1f f\sqrt{1+f^2\left(1+t^2\right)} \, dt \, df & t\to ft\\ &= \int_0^1 \int_f^1 \frac f{t^3} \sqrt{t^2\left(1+f^2\right)+f^2} \, dt \, df & t\to\frac 1t \\ &= \int_0^1 \int_0^t \frac f{t^3} \sqrt{t^2\left(1+f^2\right)+f^2} \, df \, dt & (\star) \\ &= \mathcal I & f\to ft \\[2ex] 4I_2 &= \int_0^\tfrac\pi4 \int_{\arctan(\sec\theta)}^{\arctan(\csc\theta)} \sec^4\theta\csc^3\varphi \, d\varphi \, d\theta \\ &= \int_0^\tfrac\pi4 \int_{\sec\theta}^{\csc\theta} \sec^4\theta \frac{\sqrt{1+\varphi^2}}{\varphi^3} \, df\, d\theta & f=\tan\varphi \\ &= \int_0^\tfrac\pi4 \int_1^{\cot\theta}\frac{\sec^2\theta}{f^3}\sqrt{1+f^2\sec^2\theta} \, d\theta \, df \\ &= \int_0^\tfrac\pi4 \int_{\tan\theta}^1 \sec^2\theta \sqrt{f^2+\sec^2\theta} \, d\theta \, df \\ &= \int_0^1 \int_t^1 \sqrt{1+f^2+t^2} \, df\,dt & t=\tan\theta \\ &= \int_0^1 \int_0^f \sqrt{1+f^2+t^2} \, dt\,df & (\star) \\ &= \mathcal I & t\to ft \end{align*}$$


$$\implies \sum_{i=1}^6 I_i = \boxed{\frac{6\sqrt3-\pi+12\log\left(2+\sqrt3\right)}{24}}$$

$\endgroup$
4
$\begingroup$

$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\on}[1]{\operatorname{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} &\bbox[5px,#ffd]{\int_{0}^{1}\int_{0}^{1}\int_{0}^{1} \root{{x^{2} + y^{2} + z^{2}}}\dd x\,\dd y\,\dd z} = \iiint_{\pars{0,1}^{\,\,3}}r\,\,\dd^{3}\vec{r} \end{align} Note that

$\ds{\nabla\cdot\pars{r\vec{r}} = \pars{1 \times{\vec{r} \over r}}\cdot\vec{r} + r\nabla\cdot\vec{r} = 4r \implies r = {1 \over 4} \nabla\cdot\pars{r\vec{r}}}$ such that \begin{align} &\bbox[5px,#ffd]{\int_{0}^{1}\int_{0}^{1}\int_{0}^{1} \root{{x^{2} + y^{2} + z^{2}}}\dd x\,\dd y\,\dd z} \\[5mm] = &\ {1 \over 4} \iiint_{\pars{0,1}^{\,\,3}}\nabla\cdot\pars{r\vec{r}}\,\,\dd^{3}\vec{r} = {1 \over 4}\iint_{\partial\pars{0,1}^{\,\,3}}\,\, r\,\vec{r}\cdot\dd\vec{S} \end{align} where I used Gauss-Ostrogradsky Divergence Theorem.

  • The contribution to the integral from the faces which intersect the origen of coordinates vanishes out because $\ds{\vec{r} \perp \dd\vec{S}}$.
  • Each contribution from the remaining three faces are equal between them. So, I evaluate just one integral in one of the faces ( for instance, the one which is perpendicular to $\ds{\hat{z}}$ and multiply the integral result by $\ds{3}$ ). Namely, \begin{align} &\bbox[5px,#ffd]{\int_{0}^{1}\int_{0}^{1}\int_{0}^{1} \root{{x^{2} + y^{2} + z^{2}}}\dd x\,\dd y\,\dd z} \\[5mm] = &\ 3\pars{{1 \over 4}\int_{0}^{1}\int_{0}^{1}\root{x^{2} + y^{2} + 1^{2}}\dd x\,\dd y} \\[5mm] = &\ {3 \over 4}\int_{0}^{\pi/2}\int_{0}^{\infty} \root{\rho^{2} + 1}\ \times \\[2mm] &\ \bracks{\rho\cos\pars{\phi} < 1} \bracks{\rho\sin\pars{\phi} < 1}\rho\,\dd\rho\,\dd\phi \\[5mm] = &\ {3 \over 8}\int_{0}^{\pi/2}\int_{0}^{\infty} \root{\rho + 1}\ \times \\[2mm] &\ \phantom{{3 \over 8}} \bracks{\rho < \min\braces{{1 \over \cos^{2}\pars{\phi}}, {1 \over \sin^{2}\pars{\phi}}}} \dd\rho\,\dd\phi \\[5mm] = &\ {3 \over 8}\int_{0}^{\pi/4} \int_{0}^{1/\cos^{2}\pars{\phi}} \root{\rho + 1}\dd\rho\,\dd\phi \\[2mm] + &\ {3 \over 8}\int_{\pi/4}^{\pi/2} \int_{0}^{1/\sin^{2}\pars{\phi}} \root{\rho + 1}\dd\rho\,\dd\phi \\[5mm] = &\ {1 \over 4}\int_{0}^{\pi/4} \braces{\bracks{{1 \over \cos^{2}\pars{\phi}} + 1}^{3/2} - 1}\dd\phi \\[2mm] + &\ {1 \over 4}\int_{\pi/4}^{\pi/2} \braces{\bracks{{1 \over \sin^{2}\pars{\phi}} + 1}^{3/2} - 1}\dd\phi \\[5mm] = &\ {1 \over 2}\ \underbrace{\int_{0}^{\pi/4} \bracks{\sec^{2}\pars{\phi} + 1}^{3/2}\,\dd\phi} _{\ds{{\root{3} \over 2} + {\pi \over 6} + 2\on{arccoth}\pars{\root{3}}}}\ -\ {\pi \over 8} \\[5mm] = &\ \bbx{{\root{3} \over 4} - {\pi \over 24} + \on{arccoth}\pars{\root{3}}} \approx 0.9606 \\ & \end{align}
$\endgroup$
1
$\begingroup$

Substitute:

$$z=\sqrt{x^2+y^2} t$$

$$I=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1/\sqrt{x^2+y^2}} (x^2+y^2) \sqrt{{1+t^2}} dt dy dx$$

Integrating w.r.t. $t$:

$$I=\frac{1}{2} \int_{0}^{1} \int_{0}^{1} (x^2+y^2) \left(\frac{1}{\sqrt{x^2+y^2}}\sqrt{1+\frac{1}{x^2+y^2}}+\sinh^{-1} \frac{1}{\sqrt{x^2+y^2}} \right) dy dx$$

Using the symmetry:

$$I= \int_{0}^{1} \int_{0}^{x} (x^2+y^2) \left(\frac{1}{\sqrt{x^2+y^2}}\sqrt{1+\frac{1}{x^2+y^2}}+\sinh^{-1} \frac{1}{\sqrt{x^2+y^2}} \right) dy dx$$

Now we can use polar coordinates:

$$x=r \cos \phi$$

$$y=r \sin \phi$$

$$0<\sin \phi<\cos \phi, \qquad 0<\phi< \frac{\pi}{4}$$

$$0<r< \frac{1}{\cos \phi}$$

$$I= \int_{0}^{\frac{\pi}{4}} \int_{0}^{\frac{1}{\cos \phi}} r^3 \left(\frac{1}{r}\sqrt{1+\frac{1}{r^2}}+\sinh^{-1} \frac{1}{r} \right) dr d \phi$$

$$I= \int_{0}^{\frac{\pi}{4}} \int_{0}^{\frac{1}{\cos \phi}} \left(r\sqrt{r^2+1}+r^3 \sinh^{-1} \frac{1}{r} \right) dr d \phi$$

We have:

$$\int_{0}^{\frac{1}{\cos \phi}} r\sqrt{r^2+1} dr= \frac{1}{3} \left(\frac{1}{\cos^2 \phi}+1 \right)^{3/2}-\frac{1}{3}$$

$$\int_{0}^{\frac{1}{\cos \phi}} r^3 \sinh^{-1} \frac{1}{r} dr= \frac{1}{4 \cos^4 \phi} \sinh^{-1} \cos \phi+ \frac{1-2 \cos^2 \phi}{12 \cos^3 \phi} \sqrt{1+\cos^2 \phi}+\frac16$$

So we have a complicated expression:

$$I= \frac{\pi}{24}+ \frac13 \int_{0}^{\frac{\pi}{4}} \left(\left(\frac{1}{\cos^2 \phi}+1 \right)^{3/2}-1 \right) d \phi+ \\+ \frac{1}{4} \int_{0}^{\frac{\pi}{4}} \left( \frac{1}{\cos \phi}\sinh^{-1} \cos \phi+ \frac{1}{3} (1-2 \cos^2 \phi)\sqrt{1+\cos^2 \phi} \right) \frac{d \phi}{\cos^3 \phi}$$

These are elliptic kind of integrals, though some of them might be elementary. Substitution $\cos \phi=s$ seems prudent here.

I hope this might be helpful.

Maybe using spherical coordinates from the start is better, but I haven't figured out the correct bounds yet either.

$\endgroup$
4
  • 1
    $\begingroup$ The relation $\operatorname{div}(r\vec{r})=4r$ and Ostrogradsky theorem can reduce the triple integral to three similar double integrals, i.e. $$\frac34\iint_{[0,1]^2}\sqrt{x^2+y^2+1}\,dxdy.$$ $\endgroup$ Commented Aug 26, 2019 at 22:18
  • $\begingroup$ @A.Γ., maybe this comment should be under the original post? But great idea, yes, I forgot about this useful theorem $\endgroup$ Commented Aug 26, 2019 at 22:23
  • $\begingroup$ The comment was for you as you seemed to be attracted to the problem. $\endgroup$ Commented Aug 26, 2019 at 22:28
  • $\begingroup$ @A.Γ., and I'm grateful, since frankly, I forgot that this theorem is useful beyond introductory electrostatics courses I had years ago. There are some problems of mine which I now know how to simplify thanks to you $\endgroup$ Commented Aug 26, 2019 at 22:35

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.