Let $\mathcal{E}'(\Omega)$ be the space of the distributions with compact support. Suppose that $u_n \rightarrow u$ in $\mathcal{E}'(\Omega)$. I'm trying to show that there exist a compact $K\subset \Omega$ such that $\operatorname{supp} u_n, \operatorname{supp} u \subset K$ for all $n \in \mathbb{N}$.
My attempt: Let us show that there exist $n_0 \in \mathbb{N}$ and a compact $K_1$ such that $\operatorname{supp} u_n, \operatorname{supp} u \subset K_1$ for all $n \geq n_0$. Then setting $K_2=\bigcup_{n=1}^{n_0-1} \operatorname{supp} u_n$ we obtain $K=K_1\cup K_2$ which is a compact subset set of $\Omega$ and $\operatorname{supp} u_n, \operatorname{supp} u \subset K$ for all $n \in \mathbb{N}$.
Indeed, since $u_n \rightarrow u$ in $\mathcal{E}'(\Omega)$, then $$\langle u_n, \varphi \rangle_{\mathcal{E}'(\Omega), \mathcal{E}(\Omega)} \rightarrow \langle u, \varphi \rangle_{\mathcal{E}'(\Omega), \mathcal{E}(\Omega)} \hbox{ for all } \varphi \in \mathcal{E}(\Omega)=C^\infty(\Omega).$$ Let $K_1=\operatorname{supp} u$ and $\varphi \in C_0^{\infty}(\Omega)$ such that $\operatorname{supp} \varphi \subset \Omega \setminus K_1$. Thus, for all $\varepsilon>0$ there exist $n_0(\varphi) \in \mathbb{N}$ such that $$|\langle u_n, \varphi \rangle_{\mathcal{E}'(\Omega), \mathcal{E}(\Omega)} -\langle u, \varphi \rangle_{\mathcal{E}'(\Omega), \mathcal{E}(\Omega)}|<\varepsilon \hbox{ for all } n \geq n_0.$$ Since $\operatorname{supp} u \cap \operatorname{supp} \varphi =\emptyset$, then $$\langle u, \varphi \rangle_{\mathcal{E}'(\Omega), \mathcal{E}(\Omega)}=0.$$
Therefore, for all $\varepsilon>0$ there exist $n_0(\varphi) \in \mathbb{N}$ such that $$|\langle u_n, \varphi \rangle_{\mathcal{E}'(\Omega), \mathcal{E}(\Omega)}|<\varepsilon \hbox{ for all } n \geq n_0.$$ From the arbitrariness of $\varepsilon>0$ we obtain $$\langle u_n, \varphi \rangle_{\mathcal{E}'(\Omega), \mathcal{E}(\Omega)}=0 \hbox{ for all } n \geq n_0.$$ Since the function $\varphi$ was taken arbitrarily, we have $U=\Omega \setminus K_1$ is a open subset of $\Omega$ such that $$u_n=0 \hbox{ in } U \hbox{ for all } n \geq n_0.$$
(I'm not sure about this part, because the constant $n_0$ depends on $\varphi$).
Therefore, $$ \operatorname{supp} u_n \subset \Omega \setminus U=K_1 \hbox{ for all } n \geq n_0.$$
Defining $K_2=\bigcup_{n=1}^{n_0-1} \operatorname{supp} u_n$ and $K=K_1\cup K_2$, it's easy to see that $K$ is a compact subset set of $\Omega$ and $\operatorname{supp} u_, \operatorname{supp} u \subset K$ for all $n \in \mathbb{N}$.