3
$\begingroup$

Let $\mathcal{E}'(\Omega)$ be the space of the distributions with compact support. Suppose that $u_n \rightarrow u$ in $\mathcal{E}'(\Omega)$. I'm trying to show that there exist a compact $K\subset \Omega$ such that $\operatorname{supp} u_n, \operatorname{supp} u \subset K$ for all $n \in \mathbb{N}$.

My attempt: Let us show that there exist $n_0 \in \mathbb{N}$ and a compact $K_1$ such that $\operatorname{supp} u_n, \operatorname{supp} u \subset K_1$ for all $n \geq n_0$. Then setting $K_2=\bigcup_{n=1}^{n_0-1} \operatorname{supp} u_n$ we obtain $K=K_1\cup K_2$ which is a compact subset set of $\Omega$ and $\operatorname{supp} u_n, \operatorname{supp} u \subset K$ for all $n \in \mathbb{N}$.

Indeed, since $u_n \rightarrow u$ in $\mathcal{E}'(\Omega)$, then $$\langle u_n, \varphi \rangle_{\mathcal{E}'(\Omega), \mathcal{E}(\Omega)} \rightarrow \langle u, \varphi \rangle_{\mathcal{E}'(\Omega), \mathcal{E}(\Omega)} \hbox{ for all } \varphi \in \mathcal{E}(\Omega)=C^\infty(\Omega).$$ Let $K_1=\operatorname{supp} u$ and $\varphi \in C_0^{\infty}(\Omega)$ such that $\operatorname{supp} \varphi \subset \Omega \setminus K_1$. Thus, for all $\varepsilon>0$ there exist $n_0(\varphi) \in \mathbb{N}$ such that $$|\langle u_n, \varphi \rangle_{\mathcal{E}'(\Omega), \mathcal{E}(\Omega)} -\langle u, \varphi \rangle_{\mathcal{E}'(\Omega), \mathcal{E}(\Omega)}|<\varepsilon \hbox{ for all } n \geq n_0.$$ Since $\operatorname{supp} u \cap \operatorname{supp} \varphi =\emptyset$, then $$\langle u, \varphi \rangle_{\mathcal{E}'(\Omega), \mathcal{E}(\Omega)}=0.$$

Therefore, for all $\varepsilon>0$ there exist $n_0(\varphi) \in \mathbb{N}$ such that $$|\langle u_n, \varphi \rangle_{\mathcal{E}'(\Omega), \mathcal{E}(\Omega)}|<\varepsilon \hbox{ for all } n \geq n_0.$$ From the arbitrariness of $\varepsilon>0$ we obtain $$\langle u_n, \varphi \rangle_{\mathcal{E}'(\Omega), \mathcal{E}(\Omega)}=0 \hbox{ for all } n \geq n_0.$$ Since the function $\varphi$ was taken arbitrarily, we have $U=\Omega \setminus K_1$ is a open subset of $\Omega$ such that $$u_n=0 \hbox{ in } U \hbox{ for all } n \geq n_0.$$

(I'm not sure about this part, because the constant $n_0$ depends on $\varphi$).

Therefore, $$ \operatorname{supp} u_n \subset \Omega \setminus U=K_1 \hbox{ for all } n \geq n_0.$$

Defining $K_2=\bigcup_{n=1}^{n_0-1} \operatorname{supp} u_n$ and $K=K_1\cup K_2$, it's easy to see that $K$ is a compact subset set of $\Omega$ and $\operatorname{supp} u_, \operatorname{supp} u \subset K$ for all $n \in \mathbb{N}$.

$\endgroup$

1 Answer 1

2
$\begingroup$

Say the $u_n$ are compactly supported distributions $ \in D'(\Bbb{R})$.

If they are not all supported on a common compact, looking at the smallest interval containing $supp(u_n)$ find $ n_j \to \infty,|k_j|>|k_{j-1}| +2$ such that $u_{n_j}$ is zero on $|x| >|k_j|+1$ but not on $(k_j,k_j+1)$,

Take $\psi_j\in C^\infty_c(k_j,k_j+1)$ such that $\langle u_{n_j},\psi_j\rangle \ne 0$ and look at $$\Psi_0 = 0, \qquad\Psi_j = \Psi_{j-1} + \frac{2^j - \langle u_{n_j},\Psi_{j-1}\rangle}{\langle u_{n_j},\psi_j \rangle} \psi_j$$ $$\Psi= \sum_j \frac{2^j - \langle u_{n_j},\Psi_{j-1}\rangle}{\langle u_{n_j},\psi_j \rangle} \psi_j \in C^\infty(\Bbb{R})$$ Then $$\lim_{j \to \infty}\langle u_{n_j},\Psi \rangle =\lim_{j \to \infty} 2^j \ \ne\ \langle u,\Psi \rangle$$ It works the same way for $\mathcal{E}'(\Omega)$ and arbitrary open $\Omega$.

$\endgroup$
8
  • $\begingroup$ I did not understand the construction of the compacts and why the sequence $\Psi_j $ converges in $C^\infty(\mathbb{R})$. Could you give more details? $\endgroup$ Commented Aug 28, 2019 at 18:16
  • $\begingroup$ $\lim_{j \to \infty} \Psi_j$ converges because the $\psi_j$ are supported on distinct intervals. $\endgroup$ Commented Aug 28, 2019 at 18:26
  • $\begingroup$ Sorry, the proof is very complicated for me. Could you explain why $\Psi= \sum_j \frac{2^j - <u_{n_j},\Psi_{j-1}>}{<u_{n_j},\psi_j>} \psi_j$ converges? I also don't know how to guarantee that $\langle u_{n_j}, \Psi \rangle= 2^j$, since we have a double limit. $\endgroup$ Commented Aug 28, 2019 at 18:46
  • $\begingroup$ The $\psi_j$ are smooth functions supported on disjoint intervals. On an interval $\Psi$ is given by finitely many $\psi_j$. That we obtain $<u_{n,j},\Psi>=2^j$ is because $<u_{n_j},\psi_{j+l}>=0$ for $l \ge 1$ $\endgroup$ Commented Aug 28, 2019 at 18:57
  • $\begingroup$ You know what is $C^\infty_c(\Bbb{R})$ right ? The smooth functions on $\Bbb{R}$ vanishing for $|x|\ge r$. $\endgroup$ Commented Aug 28, 2019 at 19:42

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.