2
$\begingroup$

Evaluate: $$ \int {dx\over \sin^2x\cos^4x} $$

I've started by using identities: $$ {1\over \sin^2x} = 1+\cot^2x\\ {1\over \cos^2x} = 1+\tan^2x $$

So the integral becomes: $$ \begin{align} I &= \int (1+\cot^2x)(1+\tan^2x)^2dx \\ &=\int (1+\cot^2x)(1+2\tan^2x + \tan^4x)dx \\ &=\int (1 + 2\tan^2x + \tan^4x+\cot^2x + 2 + 2\tan^2x)dx \\ &=\int (3 + 4\tan^2x+\tan^4x+\cot^2x)dx \end{align} $$

I know the integral of $\tan^2x$ and $\cot^2x$, while for $\tan^nx$ one could use a reduction formula. But I find this approach too complicated and seek for a simpler one. Another approach I've tried out is expanding $1$ in the nominator to: $$ \int {\sin^2x + \cos^2x\over \sin^2x\cos^4x}dx $$

But that was also clumsy.

Is there another approach simpler than the one suggested above? Could this approach be generalized for integrals of the form: $$ \int {dx\over \sin^{2k}x\cos^{2p}x} $$

where $k, p \in\Bbb N$?

Thank you!

$\endgroup$
3
  • 3
    $\begingroup$ There is a general method when the expression can be written as $$\int P(\cos x,\sin x)\,dx,$$ namely, the tangent half-angle substitution. Substitituing $t=\tan(x/2)$ you get $\cos x = \frac{1-t^2}{1+t^2}$ and $\sin x = \frac{2t}{1+t^2}$ and $dx=\frac{2\,dt}{1+t^2}.$ In your original formula, you get: $$\frac{1}{2}\int \frac{(1+t^2)^5}{t^2(1-t^2)^4}\,dt$$ which you can then solve by partial fractions. $\endgroup$ Commented Oct 29, 2019 at 17:21
  • 1
    $\begingroup$ Your more general formula is $$\frac{1}{2^{2k-1}}\int \frac{(1+t^2)^{2(p+k)-1}}{t^{2k}(1-t^2)^{2p}}$$ $\endgroup$ Commented Oct 29, 2019 at 17:24
  • $\begingroup$ @ThomasAndrews Thank you, that is very helpful! $\endgroup$ Commented Oct 29, 2019 at 17:50

4 Answers 4

4
$\begingroup$

$I = \displaystyle\int \dfrac{1}{\sin^2{x}\cos^4{x}} dx = \displaystyle\int \sec^2{x}\dfrac{\left(\tan^2{x}+1\right)^2}{\tan^2{x}} dx$. Now substitute $y = \tan{x}$.

$I= \displaystyle\int \dfrac{(y^2+1)^2}{y^2} dy = \frac{y^3}{3}+2y-\frac{1}{y} +C$

$\endgroup$
1
  • 3
    $\begingroup$ The more general equation is $$\int \frac{1}{\sin^{2k} x\cos^{2p}x}\,dx =\int \frac{(1+t^2)^{k+p-1}}{t^{2k}}\,dt$$ where $t=\tan x.$ $\endgroup$ Commented Oct 29, 2019 at 17:34
3
$\begingroup$

$$ \int {\sin^2x + \cos^2x\over \sin^2x\cos^4x}dx=\int {dx\over \cos^4x}+\int {dx\over \sin^2x\cos^2x}\\ =\int {(\tan^2x+1)\,d\tan x}+4\int {dx\over \sin^22x}\\ =\frac13\tan^3x+\tan x-2\cot2x.$$

$\endgroup$
2
$\begingroup$

Write $$I = \int \frac{dx}{\sin^2(x)\cos^4(x)} = \int \csc^2(x) \sec^4(x) dx$$ and use the trigonometric identities:

  1. $\sec^2(x) - \tan^2(x) = 1$

  2. $\csc^2(x) - \cot^2(x) = 1$

$$I = \int (\cot^2(x) + 1)(\tan^2(x) +1)^2 dx$$ Now use the substitution $u = \tan(x)$; from here the details should be straight-forward.

$\endgroup$
0
$\begingroup$

Another method is to substitute $t=\cot x$:

$$\begin{align}\int\frac{\mathrm dx}{\sin^2x\cos^4x}&=-\int\frac{(t^2+1)^2}{t^4}\mathrm dt\\&=-\int1+\frac2{t^2}+\frac1{t^4}\mathrm dt\\&=-t+\frac2{t}+\frac1{3t^3}+C\\&=-\cot x+2\tan x+\frac{\tan^3x}3+C\end{align}$$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.