Try to prove these beautiful formulas without using the Euler or the Weirstrass definitions of the Gamma function : $$ \ \ \displaystyle\int_{0}^{+\infty}{\mathrm{e}^{-x}\ln{x}\,\mathrm{d}x}=-\gamma \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \left(1\right) $$ $$ \ \displaystyle\int_{0}^{+\infty}{\mathrm{e}^{-x}\ln^{2}{x}\,\mathrm{d}x}=\gamma^{2}+\displaystyle\frac{\pi^{2}}{6} \ \ \ \ \ \ \ \ \ \left(2\right) $$
Is there a generalisation giving the value of $ \int\limits_{0}^{+\infty}{\mathrm{e}^{-x}\ln^{n}{x}\,\mathrm{d}x} $, for any integer $ n $ ?