Hello I simply cant explain to myself why this equation holds. Lets say we have an orthonormal basis $\vec{i}, \vec{j}$ and 2 2-D vectors in this basis which are:
\begin{align} \vec{a} &= a_1\vec{i} + a_2 \vec{j}\\ \vec{b} &= b_1\vec{i} + b_2 \vec{j} \end{align}
I know that I can calculate the norms of vectors $\left|\vec{a}\right|$ and $\left|\vec{b}\right|$ like this:
\begin{align} \left|\vec{a}\right| = \sqrt{{a_1}^2 + {a_2}^2}\\ \left|\vec{b}\right| = \sqrt{{b_1}^2 + {b_2}^2} \end{align}
When I try to justify the equation $\vec{a} \cdot \vec{b} = \left|\vec{a}\right|\left|\vec{b}\right| \cos \alpha = a_1b_1 + a_2b_2$ for a scalar product I just can't seem to do it. I can only do it in for the easiest case $\vec{a} \cdot \vec{a}$:
\begin{align} \vec{a} \cdot \vec{a} &= \left|\vec{a}\right| \left|\vec{a}\right| \overbrace{\cos \alpha}^{=1}\\ \vec{a} \cdot \vec{a} &= \left|\vec{a}\right| \left|\vec{a}\right|\\ \vec{a} \cdot \vec{a} &= \sqrt{{a_1}^2+{{a_2}^2}}\sqrt{{a_1}^2+{{a_2}^2}}\\ \vec{a} \cdot \vec{a} &= {a_1}^2+{{a_2}^2} \end{align}
Question: How do we do it for a $\vec{a} \cdot \vec{b}$? Lets say for a start that $\alpha = 0$. What about if $\alpha \neq 0$? Please provide a similar derivation as I did for $\vec{a} \cdot \vec{a}$ using norms.