0
$\begingroup$

Let the sequence $a_n$ be defined as such: $$\begin{cases}a_0=1\\ a_1=x\\a_n=xa_{n-1}-a_{n-2},\ n \in \mathbb{N}\setminus\{1,2\} \end{cases}$$ I am looking for the $x$ for which the sequence is always positive.

For $x\ge 2$, the sequence is always positive, since it is the sequence of natural numbers for $x=2$.Then, a sequence for $x>2$ is always greater or equal to the sequence for which $x=2$. I tried finding the limit $\lim_{n \rightarrow \infty}\frac{a_{n+1}}{a_n}$, and since $x>1$ ($a_2=x^2-1$), this limit only exists for $x\ge 2$, as $L=\frac{x\pm \sqrt(x^2-4)}{2}$, so for $2>x>1$ the sequence can't converge. (Since this limit is always 1 for positive sequences that converge.)

Also, if for $2>x>1$ $\ \ \ a_n\le a_{n-1}\Leftrightarrow a_{n+1}\le(x-1)a_{n-1}\Rightarrow a_{n+1}<a_{n-1}$ for positive $a_n$. Meaning that the sequence has to be stricly increasing or at some point it will be negative, because it can't converge since the limit above (of the ratio of $a_{n+1}$ and $a_n$) doesn't exist. But now I'm stuck. How can I show that for all $1<x<2$ the sequence isn't strictly increasing? Or can you find some value for which it is? (I tested experimentally and it seems that for all values under 2 the sequence decreases at some point, but one can never be sure.)

P.S. I found a way to write the general expression of the sequence, but it didn't help me much. $a_n = x^n - {n-1 \choose 1}x^{n-2}+{n-2 \choose 2}x^{n-4}-{n-3 \choose 3}x^{n-6}+\cdots $

$\endgroup$
1
  • $\begingroup$ If you want explicit expressions, you could also write $a_n=U_n(x/2)$ (Chebyshev polynomials of second kind). So for $|x|<2$, they're certainly not all positive. $\endgroup$ Commented Nov 28, 2020 at 20:19

2 Answers 2

1
$\begingroup$

The characteristic equation has two roots: $r=\frac{x+\sqrt{x^2-4}}{2}, s=\frac{x-\sqrt{x^2-4}}{2}$.

Note that $a_n-(r+s)a_{n-1}+rsa_{n-2}=0$

Case 1: $x>2$, $r, s$ are real and $r>s>0$.

$$ a_{n+1} - s a_n = r(a_n-sa_{n-1}) \Rightarrow a_{n+1} - s a_n = r^n(a_1-sa_0) =r^n (x-s) =r^{n+1}\tag1\\ $$ $$a_{n+1} - r a_n = s(a_n-ra_{n-1}) \Rightarrow a_{n+1} - r a_n = s^n(a_1-ra_0)= s^n (x-r) = s^{n+1}\tag2 $$

(1)-(2), $$a_n=\frac{r^{n+1}-s^{n+1} }{r-s} >0 \tag 3$$

(Note that $a_n=\frac{r^{n+1}-s^{n+1} }{r-s}$ as long as $r\neq s$, even if they are complex).

Case 2: $x=2$.

$$a_n-2a_{n-1}+a_{n-2}=0 \implies a_n-a_{n-1}=a_{n-1}-a_{n-2} \\ \implies a_n-a_{n-1}=a_1-a_0=1 \implies a_n=n$$

So $a_n>0, \forall n$.

Case 3: $x<2$, $r$ and $s$ are conjugate complex numbers.

Let $r=\exp\{i\theta\}, s=\exp\{i(-\theta)\}$ (since $rs=1$ we know $|r|=|s|=1$).

Now $$a_n=\frac{r^{n+1}-s^{n+1} }{r-s}=\frac{2\sin((n+1)\theta)}{2 \sin \theta} = \frac{\sin((n+1)\theta)}{\sin \theta}$$

Note that $\theta=\tan^{-1}\frac{4-x^2}{x} \in (0,\frac{\pi}{2}) \implies \lambda :=\frac{\theta}{\pi} \in (0,\frac 12)$.

If $a_n>0, \forall n$, then $\lfloor n \lambda \rfloor$ is always even. Let $k$ be the smallest integer such that $k\lambda \ge 2$, then $(k-1)\lambda < 1, \lambda = k\lambda - (k-1)\lambda > 2-1=1$, a contradiction.

So for some $n$, $a_n \leq 0$.

Conclusion: The sequence is always positive if and only if $x\geqslant 2$.

$\endgroup$
0
$\begingroup$

$a_n=xa_{n-1}-a_{n-2};\;a_0=1,a_1=x$

has characteristic equation

$\lambda^2-x\lambda+1=0$

$$\lambda=\frac{x\pm\sqrt{x^2-4}}{2}$$

therefore the solution of the recurrence are

$$a_n=\alpha\left(\frac{x+\sqrt{x^2-4}}{2}\right)^n+\beta\left(\frac{x-\sqrt{x^2-4}}{2}\right)^n$$ setting the initial values $$a_0=\alpha+\beta=1;\;a_1=\alpha\,\frac{x+\sqrt{x^2-4}}{2}+\beta\,\frac{x-\sqrt{x^2-4}}{2}=x$$ $$\alpha=\frac{1}{2}+\frac{x}{2 \sqrt{x^2-4}};\;\beta=\frac{1}{2}-\frac{x}{2 \sqrt{x^2-4}}$$ Finally the solution $$a_n=\left(\frac{1}{2}+\frac{x}{2 \sqrt{x^2-4}}\right)\left(\frac{x+\sqrt{x^2-4}}{2}\right)^n+\left(\frac{1}{2}-\frac{x}{2 \sqrt{x^2-4}}\right)\left(\frac{x-\sqrt{x^2-4}}{2}\right)^n$$

$a_n>0$ for all $n$ if $x-\sqrt{x^2-4}>0\to x>2$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.