How would find the equilibriums of the following system:
$$ \frac{d I}{dt}=-\frac{\beta S I}{N} \qquad (1)$$
$$\frac{d S}{dt}=\frac{\beta S I}{N} -\gamma I \qquad (2)$$
$$\frac{d R}{dt}=\gamma I \qquad (3) $$
where $S+I+R=N$ and $\beta,\gamma >0$.
I know one such equilibrium is \begin{align} e_1 : \left( S_1^*, I_1^*, R_1^*\right)&= \left(N, 0, 0\right), \\[2ex] \end{align}
How do I find the other(if it exists)? I believe it should be similar to the problem below unless I'm mistaken.
I have solved the more complicated case:
$$ \frac{d S}{dt}=\mu N -\frac{\beta S I}{N} - \nu S \qquad (1)$$
$$\frac{d I}{dt}=\frac{\beta S I}{N} -\gamma I - \nu I \qquad (2)$$
$$\frac{d R}{dt}=\gamma I - \nu R \qquad (3) $$
where $S+I+R=N$, $\quad$ $\mu =\nu$, $\quad$ $\mu, \beta, \nu,\gamma >0$.
Solutions are:
\begin{align} e_1 : \left( S_1^*, I_1^*, R_1^*\right)&= \left(N, 0, 0\right), \\[2ex] e_2 : \left( S_2^*, I_2^*, R_2^*\right)&= \left(\frac{N\left(\gamma+\nu\right)}{\beta}, N\nu\left(\frac{1}{\gamma +\nu}-\frac{1}{\beta}\right), N\gamma\left(\frac{1}{\gamma +\nu}-\frac{1}{\beta}\right)\right) \end{align}