Variable pairs of chords at right angles are drawn through a point $P$ (with eccentric angle $\pi/4$) on the ellipse $\frac {x^2}{4}+y^2=1$, to meet the ellipse at two points say $A $ and $B $. if the line joining $A$ and $B$ passes through a fix point $Q (a,b)$ such that $a^2+b^2$ has value equal to $\frac{m}{n}$, where $m,n$ are relatively prime positive integers. Find $(m+n)$
My Approach:
Note:-$m_{AB}$ denotes Slope of $AB$.
Equation of $AB$ is
$\frac{y}{1}\cdot sin \frac {(\alpha + \beta)}{2}+ \frac{x}{2}\cdot cos\frac {(\alpha+ \beta)}{2}= cos\frac {(\alpha -\beta)}{2}$
Let $A=(2cos\alpha,sin\alpha)$ and $B=(2cos\beta,sin\beta)$ $P=(2cos\frac{\pi}{4},sin\frac{\pi}{4})$
$m_{AP}=\frac{sin\alpha - \frac{1}{\sqrt2}}{{2cos\alpha}-\frac{2}{\sqrt2}}$
$m_{BP}=\frac{sin\alpha - \frac{1}{\sqrt2}}{{2cos\alpha}-\frac{2}{\sqrt2}}$
Because $AP$ and $BP$ are perpendicular so $m_{AP}\cdot m_{BP}=-1$
After solving I reach to $\frac{5}{2}cos(\alpha-\beta)+\frac{3}{2}cos(\alpha+\beta)$= $\frac{2cos \frac{\alpha- \beta}{2}}{\sqrt2} \biggl ( sin \frac {(\alpha - \beta)}{2}+cos\frac {(\alpha - \beta)}{2}\biggl)+\frac{5}{2}$
How to get end Result?
Can i get end result using my method or similar to my method?
This Question is same as below but he used some direct result.
Ellipse in which two chords are perpendicular to each other
Prove that the chord of the ellipse passes through a fixed point
