Using a similar idea from this answer - here $$S_4=\sum_{k=1}^\infty \frac{H_k}{k^4}$$
We know,
$$\zeta(n)=\sum_{k=1}^\infty \frac{1}{k^n}\implies \color{blue}{\zeta(n)\zeta(m)=\left(\sum_{k=1}^\infty \frac{1}{k^n}\right)\left(\sum_{k=1}^\infty \frac{1}{k^m}\right)}$$
We can now exploit the above expression,
Consider,
$$2\zeta(2)\zeta(3)=\sum_{x=1}^\infty\sum_{y=1}^\infty\sum_{i=1}^{2}\frac{1}{x^{4-i}y^{i+1}}$$
$$2\zeta(2)\zeta(3)=\sum_{i=1}^{2}\sum_{x=1}^\infty\frac{1}{x^{5}}+2\left(\sum_{y=1}^\infty\sum_{y=x+1}^{\infty}\frac{1}{(y-x)yx^{3}}-\frac{1}{(y-x)xy^{3}}\right)$$
$$2\zeta(2)\zeta(3)=\zeta(5)(2)+2\left(\sum_{y=1}^\infty\sum_{y=x+1}^{\infty}\frac{1}{(y-x)yx^{3}}-\frac{1}{(y-x)xy^{3}}\right)$$
Noting,
$$\sum_{y=1}^\infty\sum_{y=x+1}^{\infty}\frac{1}{(y-x)yx^{3}}=S_4$$
$$\sum_{y=1}^\infty\sum_{y=x+1}^{\infty}\frac{1}{(y-x)xy^{3}}=2S_4-2\zeta(5)$$
$$2\zeta(2)\zeta(3)=\zeta(5)(2)+2\left(S_4-(2S_4-2\zeta(5)\right)$$
$$2\zeta(2)\zeta(3)=\zeta(5)(6)-2S_4$$
$$S_4=\frac12\left({\zeta(5)(6)}-2\zeta(2)\zeta(3)\right)$$
$$S_4=\frac{1}{2}\left({\zeta(5)(6)}-2\zeta(2)\zeta(3)\right)$$
$$\boxed{\color{green}{\sum_{k=1}^\infty \frac{H_k}{k^4}=3\zeta(5)-\zeta(2)\zeta(3)}}$$
Note the following have been used,
Fubini Theorem
Zeta Function
Summation properties
$$\boxed{\color{red}{H_n=\sum_{k=1}^\infty \frac{k}{n(n+k)} }}$$
$$\boxed{\color{red}{\sum_{x=y+1}^{\infty}f(x,y)=\sum_{x=y}^{\infty} f(x)-f(y)}}$$
$$\boxed{\color{red}{\sum_{x=1}^{\infty}\sum_{y=1}^{x-1}=\sum_{x=y+1}^{\infty}\sum_{y=1}^{\infty}}}$$