0
$\begingroup$

I was exploring MSE when I got to know about the Euler sums of the general type $\sum_{n=1}^\infty \frac{H_n}{n^k}$.

I managed to prove the cases $k=2,3$. But, I am stuck in $k=4$.

In my approach, I managed to prove that

$$ \sum_{n=1}^\infty \frac{H_n}{n^4} = \sum_{n,k=1}^\infty \frac{1}{n^2k^3} - \sum_{n,k=1}^\infty \frac{1}{n^2k^2(n+k)}$$

For which I used $ H_n = \sum_{k=1}^\infty \frac{k}{n(n+k)}$.

The first sum is trivial, but I failed to evaluate the second one.

I saw quite a few answers on MSE, and I found this one quite satisfactory, but cumbersome at the same time.

I am seeking for a simpler answer. Any help?

$\endgroup$

2 Answers 2

2
$\begingroup$

It seems that your idea is effectively good.

$$\sum_{n=1}^\infty \sum_{k=1}^\infty \frac{1}{n^2k^2(n+k)}=\sum_{n=1}^\infty \frac{1}{n^2}\sum_{k=1}^\infty \frac{1}{k^2(n+k)}$$ $$\sum_{k=1}^\infty \frac{1}{k^2(n+k)}=\sum_{k=1}^\infty\Bigg[-\frac{1}{n^2 k}+\frac{1}{n^2 (n+k)}+\frac{1}{n k^2}\Bigg] =-\frac 1{n^2} \left(\psi (n+1)-\frac{\pi ^2 }{6}n+\gamma \right)$$

Now (using a CAS for the only difficult part), $$\sum_{k=1}^\infty \frac {\psi (n+1) } {n^4}=-\frac{\pi ^2 }{6}\zeta (3)+3 \zeta (5)-\gamma\frac{ \pi ^4}{90}$$

$\endgroup$
3
  • 1
    $\begingroup$ I would've been much happier if you didn't use CAS, and prove all the stuff by hand. $\endgroup$ Commented Jul 9, 2021 at 12:48
  • 1
    $\begingroup$ @LaxmiNarayanBhandari. Me too, be sure ! $\endgroup$ Commented Jul 9, 2021 at 12:58
  • 2
    $\begingroup$ You Literally did nothing. The sum you did by CAS is the same sum as the question $\psi(n+1)+\gamma=H_n$ $\endgroup$ Commented Dec 2, 2022 at 13:17
1
$\begingroup$

Using a similar idea from this answer - here $$S_4=\sum_{k=1}^\infty \frac{H_k}{k^4}$$

We know,

$$\zeta(n)=\sum_{k=1}^\infty \frac{1}{k^n}\implies \color{blue}{\zeta(n)\zeta(m)=\left(\sum_{k=1}^\infty \frac{1}{k^n}\right)\left(\sum_{k=1}^\infty \frac{1}{k^m}\right)}$$

We can now exploit the above expression,

Consider,

$$2\zeta(2)\zeta(3)=\sum_{x=1}^\infty\sum_{y=1}^\infty\sum_{i=1}^{2}\frac{1}{x^{4-i}y^{i+1}}$$

$$2\zeta(2)\zeta(3)=\sum_{i=1}^{2}\sum_{x=1}^\infty\frac{1}{x^{5}}+2\left(\sum_{y=1}^\infty\sum_{y=x+1}^{\infty}\frac{1}{(y-x)yx^{3}}-\frac{1}{(y-x)xy^{3}}\right)$$

$$2\zeta(2)\zeta(3)=\zeta(5)(2)+2\left(\sum_{y=1}^\infty\sum_{y=x+1}^{\infty}\frac{1}{(y-x)yx^{3}}-\frac{1}{(y-x)xy^{3}}\right)$$

Noting,

$$\sum_{y=1}^\infty\sum_{y=x+1}^{\infty}\frac{1}{(y-x)yx^{3}}=S_4$$

$$\sum_{y=1}^\infty\sum_{y=x+1}^{\infty}\frac{1}{(y-x)xy^{3}}=2S_4-2\zeta(5)$$

$$2\zeta(2)\zeta(3)=\zeta(5)(2)+2\left(S_4-(2S_4-2\zeta(5)\right)$$

$$2\zeta(2)\zeta(3)=\zeta(5)(6)-2S_4$$

$$S_4=\frac12\left({\zeta(5)(6)}-2\zeta(2)\zeta(3)\right)$$

$$S_4=\frac{1}{2}\left({\zeta(5)(6)}-2\zeta(2)\zeta(3)\right)$$

$$\boxed{\color{green}{\sum_{k=1}^\infty \frac{H_k}{k^4}=3\zeta(5)-\zeta(2)\zeta(3)}}$$


Note the following have been used,

Fubini Theorem

Zeta Function

Summation properties

$$\boxed{\color{red}{H_n=\sum_{k=1}^\infty \frac{k}{n(n+k)} }}$$

$$\boxed{\color{red}{\sum_{x=y+1}^{\infty}f(x,y)=\sum_{x=y}^{\infty} f(x)-f(y)}}$$

$$\boxed{\color{red}{\sum_{x=1}^{\infty}\sum_{y=1}^{x-1}=\sum_{x=y+1}^{\infty}\sum_{y=1}^{\infty}}}$$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.