$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} \sum_{k = 1}^{\infty}{H_{k} \over k^{4}} & = \sum_{k = 1}^{\infty}H_{k}\ \overbrace{\bracks{-\,{1 \over 6}\int_{0}^{1}\ln^{3}\pars{x}\,x^{k - 1}\,\dd x}} ^{\ds{1 \over k^{4}}} \\[5mm] & = -\,{1 \over 6}\int_{0}^{1}\ln^{3}\pars{x}\ \overbrace{\sum_{k = 1}^{\infty}H_{k}\,x^{k}} ^{\ds{-\,{\ln\pars{1 - x} \over 1 - x}}}\ \,{\dd x \over x} \\[5mm] & = {1 \over 6}\int_{0}^{1}{\ln^{3}\pars{x}\ln\pars{1 - x} \over x\pars{1 - x}} \,\dd x \\[5mm] & = {1 \over 6}\int_{0}^{1}{\ln^{3}\pars{x}\ln\pars{1 - x} \over x}\,\dd x + {1 \over 6}\int_{0}^{1}{\ln^{3}\pars{x}\ln\pars{1 - x} \over 1 - x}\,\dd x \\[5mm] & = {1 \over 6}\ \underbrace{\int_{0}^{1}{\ln^{3}\pars{x}\ln\pars{1 - x} \over x}\,\dd x} _{\ds{\mc{I}_{1}}}\ +\ {1 \over 6}\ \underbrace{\int_{0}^{1}{\ln^{3}\pars{1 - x}\ln\pars{x} \over x}\,\dd x} _{\ds{\mc{I}_{2}}} \\[5mm] & = {\mc{I}_{1} + \mc{I}_{2} \over 6}\label{1}\tag{1} \end{align}
$\ds{\Large \mc{I}_{1} = ?}$.
\begin{align} \mc{I}_{1} & = -\int_{0}^{1}\mrm{Li}_{2}'\pars{x}\ln^{3}\pars{x}\,\dd x = 3\int_{0}^{1}\mrm{Li}_{3}'\pars{x}\ln^{2}\pars{x}\,\dd x = -6\int_{0}^{1}\mrm{Li}_{4}'\pars{x}\ln\pars{x}\,\dd x \\[5mm] & = 6\int_{0}^{1}\mrm{Li}_{5}'\pars{x}\,\dd x = 6\,\mrm{Li}_{5}\pars{1} \implies \bbx{\large \mc{I}_{1} = 6\,\zeta\pars{5}}\label{2}\tag{2} \end{align}
$\ds{\Large \mc{I}_{2} = ?}$.
\begin{align} \mc{I}_{2} & = \left.\partiald[3]{}{\mu}\partiald{}{\nu} \int_{0}^{1}{\bracks{\pars{1 - x}^{\mu} - 1}x^{\nu} \over x}\,\dd x \,\right\vert_{\ \mu = 0\,,\ \nu\ =\ 0} \\[5mm] & = \left.\partiald[3]{}{\mu}\partiald{}{\nu} \int_{0}^{1}\bracks{\pars{1 - x}^{\mu}x^{\nu - 1} - x^{\nu - 1}}\dd x \,\right\vert_{\ \mu = 0\,,\ \nu\ =\ 0} \\[5mm] & = \partiald[3]{}{\mu}\partiald{}{\nu} \bracks{{\Gamma\pars{\mu + 1}\Gamma\pars{\nu} \over \Gamma\pars{\mu + \nu + 1}} - {1 \over \nu}}_{\ \mu = 0\,,\ \nu\ =\ 0} \\[5mm] & = \partiald[3]{}{\mu}\partiald{}{\nu} \braces{{\Gamma\pars{\mu + 1}\bracks{\Gamma\pars{\nu + 1}/\nu} \over \Gamma\pars{\mu + \nu + 1}} - {1 \over \nu}}_{\ \mu = 0\,,\ \nu\ =\ 0} \\[5mm] & = \partiald[3]{}{\mu}\partiald{}{\nu} \bracks{{\Gamma\pars{\mu + 1}\Gamma\pars{\nu + 1} - \Gamma\pars{\mu + \nu + 1} \over \nu\,\Gamma\pars{\mu + \nu + 1}}}_{\ \mu = 0\,,\ \nu\ =\ 0} \end{align} \begin{equation} \mbox{This limit is a 'cumbersome task'. Its value is}\ \bbx{\large\mc{I}_{2} = 12\,\zeta\pars{5} - \pi^{2}\zeta\pars{3}} \label{3}\tag{3} \end{equation} \eqref{1}, \eqref{2} and \eqref{3} lead to
$$ \bbx{\sum_{k = 1}^{\infty}{H_{k} \over k^{4}} = 3\,\zeta\pars{5} - {1 \over 6}\,\pi^{2}\,\zeta\pars{3}} $$