5
$\begingroup$

I was trying to compute the value of $$\sum_{k=1}^\infty \frac{H_k}{k^4}$$ and I was able to reduce it down to $$-\zeta(2)\zeta(3)+\int_0^1 \frac{\text{Li}_2^2(x)}{x}dx$$ However, I can't figure out how to compute the value of the integral $$\int_0^1 \frac{\text{Li}_2^2(x)}{x}dx$$ How can I find its value?

Don't try integration by parts. This integral is what I ended up with after integration by parts.

$\endgroup$
4
  • $\begingroup$ Using Parseval it reduces to $\int_{1/2-i\infty}^{1/2+i\infty} |\Gamma(s)\zeta(s+2)|^2ds$ $\endgroup$ Commented Nov 24, 2017 at 23:56
  • $\begingroup$ @reuns Sorry, but I'm not very experienced in complex analysis. $\endgroup$ Commented Nov 25, 2017 at 0:04
  • 1
    $\begingroup$ There's a sign error. The correct formula is $$\sum_{k=1}^\infty \frac{H_k}{k^4}=\zeta(2)\zeta(3)-\int_0^1 \frac{\text{Li}_2^2(x)}{x}dx.$$ $\endgroup$ Commented Nov 25, 2017 at 14:59
  • $\begingroup$ A related post $\endgroup$ Commented May 31, 2019 at 5:05

5 Answers 5

4
$\begingroup$

$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} \sum_{k = 1}^{\infty}{H_{k} \over k^{4}} & = \sum_{k = 1}^{\infty}H_{k}\ \overbrace{\bracks{-\,{1 \over 6}\int_{0}^{1}\ln^{3}\pars{x}\,x^{k - 1}\,\dd x}} ^{\ds{1 \over k^{4}}} \\[5mm] & = -\,{1 \over 6}\int_{0}^{1}\ln^{3}\pars{x}\ \overbrace{\sum_{k = 1}^{\infty}H_{k}\,x^{k}} ^{\ds{-\,{\ln\pars{1 - x} \over 1 - x}}}\ \,{\dd x \over x} \\[5mm] & = {1 \over 6}\int_{0}^{1}{\ln^{3}\pars{x}\ln\pars{1 - x} \over x\pars{1 - x}} \,\dd x \\[5mm] & = {1 \over 6}\int_{0}^{1}{\ln^{3}\pars{x}\ln\pars{1 - x} \over x}\,\dd x + {1 \over 6}\int_{0}^{1}{\ln^{3}\pars{x}\ln\pars{1 - x} \over 1 - x}\,\dd x \\[5mm] & = {1 \over 6}\ \underbrace{\int_{0}^{1}{\ln^{3}\pars{x}\ln\pars{1 - x} \over x}\,\dd x} _{\ds{\mc{I}_{1}}}\ +\ {1 \over 6}\ \underbrace{\int_{0}^{1}{\ln^{3}\pars{1 - x}\ln\pars{x} \over x}\,\dd x} _{\ds{\mc{I}_{2}}} \\[5mm] & = {\mc{I}_{1} + \mc{I}_{2} \over 6}\label{1}\tag{1} \end{align}


$\ds{\Large \mc{I}_{1} = ?}$. \begin{align} \mc{I}_{1} & = -\int_{0}^{1}\mrm{Li}_{2}'\pars{x}\ln^{3}\pars{x}\,\dd x = 3\int_{0}^{1}\mrm{Li}_{3}'\pars{x}\ln^{2}\pars{x}\,\dd x = -6\int_{0}^{1}\mrm{Li}_{4}'\pars{x}\ln\pars{x}\,\dd x \\[5mm] & = 6\int_{0}^{1}\mrm{Li}_{5}'\pars{x}\,\dd x = 6\,\mrm{Li}_{5}\pars{1} \implies \bbx{\large \mc{I}_{1} = 6\,\zeta\pars{5}}\label{2}\tag{2} \end{align}
$\ds{\Large \mc{I}_{2} = ?}$. \begin{align} \mc{I}_{2} & = \left.\partiald[3]{}{\mu}\partiald{}{\nu} \int_{0}^{1}{\bracks{\pars{1 - x}^{\mu} - 1}x^{\nu} \over x}\,\dd x \,\right\vert_{\ \mu = 0\,,\ \nu\ =\ 0} \\[5mm] & = \left.\partiald[3]{}{\mu}\partiald{}{\nu} \int_{0}^{1}\bracks{\pars{1 - x}^{\mu}x^{\nu - 1} - x^{\nu - 1}}\dd x \,\right\vert_{\ \mu = 0\,,\ \nu\ =\ 0} \\[5mm] & = \partiald[3]{}{\mu}\partiald{}{\nu} \bracks{{\Gamma\pars{\mu + 1}\Gamma\pars{\nu} \over \Gamma\pars{\mu + \nu + 1}} - {1 \over \nu}}_{\ \mu = 0\,,\ \nu\ =\ 0} \\[5mm] & = \partiald[3]{}{\mu}\partiald{}{\nu} \braces{{\Gamma\pars{\mu + 1}\bracks{\Gamma\pars{\nu + 1}/\nu} \over \Gamma\pars{\mu + \nu + 1}} - {1 \over \nu}}_{\ \mu = 0\,,\ \nu\ =\ 0} \\[5mm] & = \partiald[3]{}{\mu}\partiald{}{\nu} \bracks{{\Gamma\pars{\mu + 1}\Gamma\pars{\nu + 1} - \Gamma\pars{\mu + \nu + 1} \over \nu\,\Gamma\pars{\mu + \nu + 1}}}_{\ \mu = 0\,,\ \nu\ =\ 0} \end{align} \begin{equation} \mbox{This limit is a 'cumbersome task'. Its value is}\ \bbx{\large\mc{I}_{2} = 12\,\zeta\pars{5} - \pi^{2}\zeta\pars{3}} \label{3}\tag{3} \end{equation}

\eqref{1}, \eqref{2} and \eqref{3} lead to

$$ \bbx{\sum_{k = 1}^{\infty}{H_{k} \over k^{4}} = 3\,\zeta\pars{5} - {1 \over 6}\,\pi^{2}\,\zeta\pars{3}} $$

$\endgroup$
3
$\begingroup$

I wonder if there is not a problem somewhere.

I agree that $$\sum_{k=1}^\infty \frac{H_k}{k^4}=-\zeta(2)\zeta(3)+\text{something}$$ Setting $$\text{something}=\int_0^1 \frac{\text{Li}_2^2(x)}{x}dx$$ may be not correct since the numerical integration leads to $0.843825$ while, numerically $$\sum_{k=1}^\infty \frac{H_k}{k^4}=1.13348$$ making $$\text{something}=3.11078$$ which is identified as $3\zeta(5)$.

It could be good that you describe the intermediate steps.

$\endgroup$
2
  • $\begingroup$ You are correct, and Euler already knew that. =D $\endgroup$ Commented Nov 25, 2017 at 13:16
  • $\begingroup$ The correct formula is $$\sum_{k=1}^\infty \frac{H_k}{k^4}=\zeta(2)\zeta(3)-\int_0^1 \frac{\text{Li}_2^2(x)}{x}dx,$$ btw, in excellent agreement with your numerical results. $\endgroup$ Commented Nov 25, 2017 at 20:05
2
$\begingroup$

The explicit values of all the Euler sums $\sum_{n\geq 1}\frac{H_n}{n^s}$ are well known and related to convolutions of $\zeta$ values. Flajolet and Salvy showed how to derive them from the residue theorem, for instance.

Here I will outline a different technique, less efficient but more elementary. Let us assume that $a,b$ are distinct positive real numbers and recall that $\sum_{n\geq 1}H_n z^n = -\frac{\log(1-z)}{1-z}$. By partial fraction decomposition $$ \frac{1}{(n+a)(n+b)}=\frac{\frac{1}{b-a}}{n+a}+\frac{\frac{1}{a-b}}{n+b}$$ hence $$ \sum_{n\geq 1}\frac{H_n}{(n+a)(n+b)} = -\int_{0}^{1}\frac{\log(1-x)}{1-x}\left[\frac{x^{a-1}}{b-a}+\frac{x^{b-1}}{a-b}\right]\,dx$$ where the resulting integral can be computed by integration by parts and by differentiating Euler's Beta function. The outcome is: $$\sum_{n\geq 1}\frac{H_n}{(n+a)(n+b)} = \frac{H_{a-1}^2-H_{b-1}^2-\psi'(a)-\psi'(b)}{2(a-b)}$$ hence by considering the limit as $b\to a$: $$ \sum_{n\geq 1}\frac{H_n}{(n+a)^2}=H_{a-1}\psi'(a)-\tfrac{1}{2}\psi''(a). $$ In order to compute $\sum_{n\geq 1}\frac{H_n}{n^s}$, it is enough to apply $\left(\lim_{a\to 0^+}\frac{d^{s-2}}{da^{s-2}}\right)$ to both sides of the previous line. In the $s=4$ case we get: $$ \sum_{n\geq 1}\frac{H_n}{n^4}=\frac{1}{6}\lim_{a\to 0^+}\left[3\,\psi'(a)\,\psi''(a)+H_{a-1}\,\psi'''(a)-\tfrac{1}{2}\psi^{IV}(a)\right]=\color{blue}{3\,\zeta(5)-\zeta(2)\,\zeta(3)}. $$

$\endgroup$
1
  • $\begingroup$ Would you mind elaborating on how you "differentiated Euler's Beta Function" to arrive at $$\frac{H_{a-1}^2-H_{b-1}^2-\psi'(a)-\psi'(b)}{2a-2b}$$? $\endgroup$ Commented Dec 22, 2017 at 18:03
1
$\begingroup$

Since $H_k=H_{k-1}+\frac1k$, we have $$\sum^\infty_{k=1}\frac{H_k}{k^4}=\sum^\infty_{k=1}\frac{H_{k-1}}{k^4}+\sum^\infty_{k=1}\frac1{k^5} =\sum^\infty_{k=1}\frac{H_{k-1}}{k^4}+\zeta(5).\tag1$$ If we define $$\sigma_h(s,t)=\sum^\infty_{n=1}\frac1{n^t}\sum^{n-1}_{k=1}\frac1{k^s},$$ already Euler expressed those sums by special values of the Riemann Zeta Function. He proved rigorously $$2\sigma_h(1,m)=m\,\zeta(m+1)-\sum^{m-2}_{k=1}\zeta(m-k)\,\zeta(k+1)$$ for $m\ge2$ (that's equation (3) in this paper). So the sum of the RHS of (1) is $\sigma_h(1,4)$, and the above formula easily gives $\sigma_h(1,4)=2\,\zeta(5)-\zeta(2)\,\zeta(3)$, and (1) gives the final result $$\sum^\infty_{k=1}\frac{H_k}{k^4}=3\,\zeta(5)-\zeta(2)\,\zeta(3).$$

$\endgroup$
1
$\begingroup$

To find your Euler sum I will make use of the following result which can be found here $$\sum_{k=1}^{\infty} \dfrac{H_k^{(p)}}{k^q}=\frac{(-1)^{q+1}}{\Gamma(q)} \int_{0}^{1} \frac{\ln^{q - 1} (u) \text{Li}_{p}(u)}{u (1 - u)}{du}.$$ Here $H^{(p)}_k$ are the generalised harmonic numbers with $H^{(1)}_k$ corresponding to the ordinary harmonic numbers $H_k$. It should be noted that the above result is proved using real methods only.

So when $p = 1$ and $q = 4$ we have $$\sum^\infty_{k = 1} \frac{H_k}{k^4} = -\frac{1}{\Gamma (4)} \int^1_0 \frac{\ln^3 (u) \, \text{Li}_1 (u)}{u (1 - u)} \, du = \frac{1}{6} \int^1_0 \frac{\ln^3 (u) \ln (1 - u)}{u (1 - u)} \, du,$$ where $\text{Li}_1 (u) = - \ln (1 - u)$ has been used.

The resulting integral can be found by reducing it to a double limit of the derivative of the beta function $\text{B}(x,y)$ as follows. As $$\text{B}(x,y) = \int^1_0 t^{x - 1} (1 - t)^{y - 1} \, dt,$$ we have $$\lim_{x \to 0^+} \lim_{y \to 0^+} \partial^3_x \partial_y \text{B}(x,y) = \int^1_0 \frac{\ln^3 (u) \ln (1 - u)}{u (1 - u)} \, du.$$ Thus \begin{align*} \sum^\infty_{k = 1} \frac{H_k}{k^4} &= \frac{1}{6} \lim_{x \to 0^+} \lim_{y \to 0^+} \partial^3_x \partial_y \text{B}(x,y) = \frac{1}{6} \left [-\frac{3}{4} \psi^{(4)} (1) + 3 \psi^{(2)}(1) \psi^{(1)}(1) \right ]. \end{align*} Here $\psi^{(m)}(x)$ is the polygamma function of order $m$. Values for the polygamma function when their arguments are equal to unity are well known. They are: $$\psi^{(4)}(1) = - 24 \zeta(5), \,\, \psi^{(2)}(1) = -2 \zeta (3), \,\,\psi^{(1)}(1) = \zeta (2),$$ and yields $$\sum^\infty_{k = 1} \frac{H_k}{k^4} = 3 \zeta (5) - \zeta (2) \zeta (3).$$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.