For a skew symmetric block $n \times n$ matrix $B$, prove that matrix $M$ has two double eigenvalues.
$$ M = \begin{bmatrix} I & B \\ B & I\end{bmatrix} $$
For a proof, I was using the determinants, but got stuck as I do not know how to take into the account the skew symmetric matrices.
\begin{align} \det(M-\lambda I) &= \det((1-\lambda)I)\det((1-\lambda)I-(1-\lambda)^{-1}BB)\\ &=(1-\lambda)^{n}\det((1-\lambda)(I-(1-\lambda)^{-2}BB)) \\ &=(1-\lambda)^{n}(1-\lambda)^{n}\det((1-\lambda)^{-2}((1-\lambda)^{2}I-BB)) \\ &=(1-\lambda)^{n}(1-\lambda)^{n}(1-\lambda)^{-2n}\det((1-\lambda)^{2}I-BB) \\ &=\det((1-\lambda)^{2}I-BB) \end{align}
At the last step I got stuck as I am not sure how to proceed to prove that there are two double eigenvalues.