Consider the probability triple $([0,1]^2, \mathcal{B}[0,1], Leb_2)$.
Let $X: [0,1]^2 \rightarrow \mathbb{R}$ be random variables defined by
$X(\omega_1, \omega_2) = \omega_1 + \omega_2$,
$Y(\omega_1, \omega_2) = \omega_2 - \omega_1$.
Let $F_{X,Y}$ be the joint cumulative distribution function. Find $F_{X,Y}(0.58,0.35)$.
I have attempted to solve the problem by:
$F_{X,Y}(0.58,0.35)=\mathbb{P}(X \le 0.58, Y \le 0.35)$
$=\mathbb{P}( \omega_1 + \omega_2 \le 0.58, \omega_2 - \omega_1 \le 0.35)$
$=\mathbb{P}( \omega_1 \le 0.115, \omega_2 \le 0.4625)$
$=Leb_2([0,0.115]X[0,0.4625])$
$=0.0535$
However I do not think this is correct.
