Here is a partial attempt. Perhaps this may lead to a closed form.
Integrating by parts twice yields $$ \begin{align} \int_0^\infty\sin^{2n}(t)e^{-t}\,\mathrm{d}t &=2n\int_0^\infty\sin^{2n-1}(t)\cos(t)\,e^{-t}\,\mathrm{d}t\\ &=2n\int_0^\infty\left((2n-1)\sin^{2n-2}(t)-2n\sin^{2n}(t)\right)\,e^{-t}\,\mathrm{d}t\\ (4n^2+1)\int_0^\infty \sin^{2n}(t)e^{-t}\,\mathrm{d}t &=(4n^2-2n)\int_0^\infty\sin^{2n-2}(t)\,e^{-t}\,\mathrm{d}t \end{align} $$ Therefore, $$ \begin{align} \int_0^\infty\sin^{2n}(t)e^{-t}\,\mathrm{d}t &=\prod_{k=1}^n\frac{2k(2k-1)}{4k^2+1}\\ &=\frac{(2n)!}{\prod\limits_{k=1}^n(4k^2+1)} \end{align} $$ Now $$ \begin{align} \int_0^\infty e^{-t}\log(\cos^2(t))\,\mathrm{d}t &=\int_0^\infty\log\left(1-\sin^2(t)\right)\,e^{-t}\,\mathrm{d}t\\ &=-\sum_{n=1}^\infty\int_0^\infty\frac1n\sin^{2n}(t)\,e^{-t}\,\mathrm{d}t\\ &=-2\sum_{n=1}^\infty\frac{(2n-1)!}{\prod\limits_{k=1}^n(4k^2+1)} \end{align} $$ The terms of the last sum decay like $n^{-3/2}$, so the sum does converge, although slowly.
As derived in my other post, the integral is equal to the simpler looking sum $$ \int_0^\infty e^{-t}\log(\cos^2(t))\,\mathrm{d}t=\sum_{k=1}^\infty(-1)^k\frac{8k}{4k^2+1} $$ At least $4k^2+1$ is still in the denominator.