Assume that we have two sequences $(a_n)_{n \in \mathbb Z}, (b_n)_{n \in \mathbb Z}$ such that
- for each $l\in \mathbb N $ the sequence $\left(|n|^l a_n\right)_{n \in \mathbb Z}$ is bounded,
- there exists $s \in \mathbb N$ such that $\displaystyle\sum_{n \in \mathbb Z} \frac{|b_n|^2}{(1+n^2)^s}< \infty$.
Let $\displaystyle c_n=\sum_{k \in \mathbb Z} a_k b_{n-k}$ for $n \in \mathbb Z$.
How to prove that for some constants $M >0$ and $t> 0$ the following holds: $$ |c_n| \leq M (1+n^2)^t \textrm{ for } n\in \mathbb Z. $$