How do you prove $\mathsf{xor} \, \mathsf{True}\, \mathsf{True}$ is false in lambda calculus using call-by-value reduction.
This is the approach I tried but it is not working:
$$\mathsf{xor} \equiv \lambda xy.x(y F T) y$$
$$\mathsf{xor} \, T T \equiv (\lambda xy.x(y F T)y) T T$$
$$\mathsf{xor}\, T T \equiv (\lambda xy.x(y (\lambda x y.y) (\lambda x y.x))y) T T$$
Then by beta reduction of leftmost inner
$$\mathsf{xor}\, T T \equiv (\lambda xy.x(y (\lambda y.y) )y) T T$$
But I feel there is a mistake somewhere as the steps above did not lead me to the expected answer.