5
$\begingroup$

Let $0<a<m$ be integers with $\gcd(a,m)=1$. For $s\in\mathbb{C}$ with $\Re s>1$, define $$\zeta(m,a;s)=\prod_{\substack{p\text{ is prime}\\p\equiv a\pmod m}}(1-p^{-s})^{-1}.$$

I'm looking for an efficient (arbitrary precision) computation of $\zeta(m,a;s)$. Assume that we have such a computation of Dirichet $L$-functions.

This paper by H. Cohen (which motivated me the most) covers various sums and products over primes, as well as Dirichlet $L$-functions and more, but not the above.

I found a satisfactory solution for some specific cases.


The simplest are $m\in\{3,4,6\}$, with a single nontrivial character $\chi$ modulo $m$. Let \begin{align*}f_1(s)&=\log\zeta(3,1;s),&g_1(s)&=\log[(1-3^{-s})\zeta(s)],\\f_2(s)&=\log\zeta(3,2;s),&g_2(s)&=\log L(s,\chi),\end{align*} then $g_1(s)=f_1(s)+f_2(s)$ and $g_2(s)=f_1(s)+f_2(2s)-f_2(s)$. This gives $$f_2(s)=\sum_{n=0}^\infty 2^{-n-1}g(2^n s),\qquad g(s)=g_1(s)-g_2(s),$$ a series that converges very quickly (its term is $O(2^{-2^n\sigma})$ with $\sigma=\Re s$). Thus, we have an efficient (enough) way to compute $f_2(s)$ and then $f_1(s)=g_1(s)-f_2(s)$.


The case $m=8$ is just a bit harder. Take the following table of characters:

$a$ $1$ $3$ $5$ $7$
$\chi_1(a)$ $1$ $1$ $1$ $1$
$\chi_2(a)$ $1$ $1$ $-1$ $-1$
$\chi_3(a)$ $1$ $-1$ $-1$ $1$
$\chi_4(a)$ $1$ $-1$ $1$ $-1$

Then, if we put $g_k(s)=\log L(s,\chi_k)$, we obtain (for $a=3$, and similarly for other values) $$\log\zeta(8,3;s)=\sum_{n=0}^\infty 2^{-n-2}g(2^n s),\qquad g(s)=g_1(s)+g_2(s)-g_3(s)-g_4(s).$$


But already the case $m=5$ gets me confused completely.

$\endgroup$
2
  • $\begingroup$ $\log\prod_{p\equiv a\bmod m} (1-p^{-s})^{-1}$ is a series of $\log L(ks,\chi)$ with $\chi\bmod m$ but the coefficients might be a bit messy $\endgroup$ Commented Apr 19, 2022 at 22:05
  • 1
    $\begingroup$ I get $\sum_p \chi(p) p^{-s}= \sum_{k\ge 1} \frac{\mu(k)}{k} \log L(ks,\chi^k)$ then your function is $\exp(\sum_{k\ge 1} \frac1k\sum_{p\equiv a\bmod m} p^{-sk}) = \exp(\sum_{k\ge 1} \frac1k\sum_p p^{-sk}\frac1{\phi(m)}\sum_{\chi \bmod m}\overline{\chi}(a)\chi(p))$ $\endgroup$ Commented Apr 25, 2023 at 5:44

1 Answer 1

1
$\begingroup$

A partial (and a bit disappointing) answer following the comment by @reuns.

Things look good if $a\equiv\pm1\pmod m$ and not as good otherwise. We get $$ \varphi(m)\log\zeta(m,a;s)=\sum_{\chi\bmod m}\overline{\chi}(a)F(s,\chi), \\ F(s,\chi)=\sum_{n>0}\frac1n\sum_{d\ |\ n}\mu(d)\log L(ns,\chi^d). $$ The inner sum can be simplified, but let's feed it to PARI/GP as is:

experiment(m, a, n) = { my (g = znstar(m, 1)); my (w = [Mod(x, polcyclo(g.no)), g.no]); my (t = matrix(m, n)); for (i = 1, m, if (gcd(i, m) == 1, my (c = 1 / chareval(g, i, a, w)); for (j = 1, n, fordiv(j, d, my (k = lift(Mod(i, m) ^ d)); t[k, j] += c * moebius(d) )) )); my (r = matrix(g.no, n), j = 0); for (i = 1, m, if (gcd(i, m) == 1, j += 1; r[j,] = lift(t[i,]) )); return (r) }; 

This (ugly) script computes the coefficients $c_{n,\chi}$ (assuming $m,a$ fixed) in $$ \varphi(m)\log\zeta(m,a;s)=\sum_{n>0}\frac1n\sum_{\chi\bmod m}c_{n,\chi}\log L(ns,\chi) $$ For $m=5$, and the characters as given here, experiment(5, 1, 16) yields

$\chi$ $c_{1,\chi}$ $c_{2,\chi}$ $c_{4,\chi}$ $c_{8,\chi}$ $c_{16,\chi}$
$\chi_{5,1}$ $1$ $-1$ $0$ $-1$ $0$ $0$ $0$ $-1$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $-1$
$\chi_{5,2}$ $1$ $1$ $0$ $1$ $0$ $0$ $0$ $1$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $1$
$\chi_{5,3}$ $1$ $1$ $0$ $1$ $0$ $0$ $0$ $1$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $1$
$\chi_{5,4}$ $1$ $-1$ $0$ $-1$ $0$ $0$ $0$ $-1$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $-1$

and experiment(5, 4, 16) yields

$\chi$ $c_{1,\chi}$ $c_{2,\chi}$ $c_{4,\chi}$ $c_{8,\chi}$ $c_{16,\chi}$
$\chi_{5,1}$ $1$ $-1$ $0$ $-1$ $0$ $0$ $0$ $-1$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $-1$
$\chi_{5,2}$ $-1$ $-1$ $0$ $-1$ $0$ $0$ $0$ $-1$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $-1$
$\chi_{5,3}$ $-1$ $-1$ $0$ $-1$ $0$ $0$ $0$ $-1$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $-1$
$\chi_{5,4}$ $1$ $3$ $0$ $3$ $0$ $0$ $0$ $3$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $3$

but, unfortunately, experiment(5, 2, 16) yields

$\chi$ $c_{1,\chi}$ $c_{2,\chi}$ $c_{4,\chi}$ $c_{8,\chi}$ $c_{16,\chi}$
$\chi_{5,1}$ $1$ $1$ $0$ $1$ $0$ $0$ $0$ $1$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $1$
$\chi_{5,2}$ $-i$ $-i$ $-2i$ $-i$ $0$ $-2i$ $-2i$ $-i$ $-2i$ $0$ $-2i$ $-2i$ $0$ $-2i$ $0$ $-i$
$\chi_{5,3}$ $i$ $i$ $2i$ $i$ $0$ $2i$ $2i$ $i$ $2i$ $0$ $2i$ $2i$ $0$ $2i$ $0$ $i$
$\chi_{5,4}$ $-1$ $-1$ $0$ $-1$ $0$ $0$ $0$ $-1$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $-1$

where, say, the row for $\chi_{5,3}$ is ($i$ times) the sequence A374366 in OEIS.

If $a\equiv\pm1\pmod m$, then $c_{n,\chi}=0$ if there is a prime that divides $n$ but not $\varphi(m)$.

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.