3
$\begingroup$

I want to integrate the following integral using a variety of methods. It came up while I was working out a solution for $\int_0^\pi\frac{x(\pi-x)}{\sin{(x)}}$. $$\int_0^\infty\frac{\ln{(x)}\ln{(1+ix)}}{1+x^2}dx$$ Using the Taylor series, I have tried to expand $\ln{(1+ix)}$. I tried to use $\int_0^\infty\frac{x^n\ln{(1+ix)}}{x^2+1}dx$ to solve the above problem, but I couldn't solve this one either. I tried integration by parts by setting $u=\ln{(x)}\ln{(1+ix)}$ and $dv=\frac{1}{x^2+1}$ but it seemed to complicate it further. I'm not acquainted enough with complex analysis to solve it that way, but I would appreciate a complex analysis answer regardless. I'm not sure what else I can do. Thank you in advance

$\endgroup$
2
  • $\begingroup$ "... by a variety of methods." Do you really want multiple solutions, or will one do? $\endgroup$ Commented Oct 15, 2022 at 1:08
  • $\begingroup$ @ThomasAndrews I only need one $\endgroup$ Commented Oct 15, 2022 at 1:09

3 Answers 3

3
$\begingroup$

Note

\begin{align} &\int_0^\infty\frac{\ln{x}\ln{(1+ix)}}{1+x^2}dx\\ =&\ \frac12 \int_0^\infty\frac{\ln{x}\ln{(1+x^2)}}{1+x^2}dx + i\int_0^\infty\frac{\ln{x}\tan^{-1}x}{1+x^2}dx \end{align} where \begin{align} \int_0^\infty\frac{\ln{x}\ln{(1+x^2)}}{1+x^2}{dx}& \overset{x\to \frac1x}=\int_0^\infty\frac{\ln^2{x}}{1+x^2}dx =\frac{\pi^3}8\\ \\ \int_0^\infty \frac{\ln x\tan^{-1}x}{1+x^2}dx =& \int_0^\infty \int_0^1 \frac{x\ln x}{(1+x^2)(1+y^2x^2)} \overset{x\to \frac1{xy}}{dx}dy\\ = & \ \frac1{2}\int_0^1\int_0^\infty \frac{-x\ln y}{(1+x^2)(1+{y^2}x^2)} {dx}\ dy\\ =& \ \frac12\int_0^1\frac{\ln^2 y}{1-y^2}dy =\frac78\zeta(3) \end{align}

$\endgroup$
3
$\begingroup$

Using the fact that $$ \begin{aligned} \ln (1+i x) &=\ln \left(\sqrt{1+x^2} \cdot e^{i \tan ^{-1} x}\right) \\ &=\frac{1}{2} \ln \left(1+x^2\right)+i \tan ^{-1}x, \end{aligned} $$ we splits the integral into two as $$ I=\frac{1}{2} \underbrace{\int_0^{\infty} \frac{\ln x \ln \left(1+x^2\right)}{1+x^2}}_J d x+i \underbrace{\int_0^{\infty} \frac{\ln x \tan ^{-1} x}{1+x^2} d x}_K $$ Letting $x\mapsto\tan x$ yields $$ \begin{aligned} J &=-2 \int_0^{\frac{\pi}{2}} \ln (\tan x) \ln (\cos x) d x \\ &=2 \int_0^{\frac{\pi}{2}} \ln ^2(\cos x)dx-2 \int_0^{\frac{\pi}{2}} \ln (\sin x) \ln (\cos x) d x \\ &=2 \cdot \frac{1}{24}\left(\pi^3+3 \pi \ln ^2 4\right)-2\left(-\frac{\pi^3}{48}+\frac{\pi}{2} \ln ^2 2\right)\cdots (*) \\ &=\frac{\pi^3}{8} \end{aligned} $$ where $(*)$ comes from my post .

$$ \begin{aligned} K &=\int_0^{\infty} \frac{\ln x \tan ^{-1} x}{1+x^2} d x=\int_0^{\frac{\pi}{2}} x \ln (\tan x) d x=\frac{7}{8} \zeta(3), \end{aligned} $$ where the last result comes from my post.

We can now conclude that $$ \boxed{I=\frac{1}{16}\left(\pi^3+14 i\zeta(3)\right)} $$

$\endgroup$
2
  • $\begingroup$ I think you forget to take the $1/2$ in front of the $J$ integral into account. $\endgroup$ Commented Oct 15, 2022 at 17:09
  • $\begingroup$ Thank you very much for catching it. Fixed. $\endgroup$ Commented Oct 15, 2022 at 22:14
1
$\begingroup$

Let $$I = \int_0^\infty\frac{\ln(x)\ln(1+ix)}{1+x^2}\,dx$$

By substituting $x\mapsto\frac1x$, we have

$$\int_1^\infty \frac{\ln(x)\ln(1+ix)}{1+x^2} \, dx = \int_0^1 \frac{\ln\left(\frac1x\right)\ln\left(1+\frac ix\right)}{1+\frac1{x^2}} \, \frac{dx}{x^2} = - \int_0^1 \frac{\ln(x)(\ln(x+i)-\ln(x))}{1+x^2} \, dx$$

Rejoining this with the part of $I$ over $[0,1]$, we get

$$\begin{align*} I &= \int_0^1 \frac{\ln(x)}{1+x^2} \ln\left(\frac{1+ix}{i+x}\right) \, dx + \int_0^1 \frac{\ln^2(x)}{1+x^2} \, dx \\[1ex] &= \int_0^1 \frac{\ln(x)}{1+x^2}\ln\left(\frac{1+ix}{1-ix}\right) \, dx - \ln(i) \int_0^1 \frac{\ln(x)}{1+x^2} \, dx + \int_0^1 \frac{\ln^2(x)}{1+x^2} \, dx \\[1ex] &= 2i \int_0^1 \frac{\ln(x)\arctan(x)}{1+x^2} \, dx - \frac{i\pi}2 \int_0^1 \frac{\ln(x)}{1+x^2} \, dx + \int_0^1 \frac{\ln^2(x)}{1+x^2} \, dx \end{align*}$$


For the latter two integrals, we consider

$$J_a = \int_0^1 \frac{\ln^a(x)}{1+x^2} \, dx \\ K_a = \int_0^1 x^{2n} \ln^a(x) \, dx$$

Derive some recurrences:

$$\begin{align*} J_a &= -a \int_0^1 \frac{\ln^{a-1}(x) \arctan(x)}x \, dx \tag{1} \\[1ex] &= -a \sum_{n=0}^\infty \frac{(-1)^n}{2n+1} \int_0^1 x^{2n} \ln^{a-1}(x) \, dx \tag{2} \\[1ex] &= -a \sum_{n=0}^\infty \frac{(-1)^n}{2n+1} K_{a-1} \\[3ex] K_{a-1} &= -(a-1) \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)^2} \int_0^1 x^{2n} \ln^{a-2}(x) \, dx \tag{1} \\[1ex] &= -(a-1) \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)^2} K_{a-2} \\[3ex] \implies J_a &= (-1)^a a! \beta(a+1) \tag{3} \\[3ex] \implies I &= 2i \int_0^1 \frac{\ln(x)\arctan(x)}{1+x^2} \, dx + \frac{i\pi}2 G + \frac{\pi^3}{16} \end{align*}$$


For the remaining integral,

$$\begin{align*} \int_0^1 \frac{\ln(x)\arctan(x)}{1+x^2} \, dx &= \int_0^{\frac\pi4} x \ln(\tan(x)) \, dx \tag{4} \\[1ex] &= \int_0^{\frac\pi4} x \ln(\sin(x)) \, dx - \int_0^{\frac\pi4} x \ln(\cos(x)) \, dx \\[1ex] &= \int_{\frac\pi4}^{\frac\pi2} \left(\frac\pi2-x\right) \ln\left(\sin\left(\frac\pi2-x\right)\right) \, dx - \int_0^{\frac\pi4} x \ln(\cos(x)) \, dx \tag{5} \\[1ex] &= \frac\pi2 \int_0^{\frac\pi4} \ln(\sin(x)) \, dx - \int_0^{\frac\pi2} x \ln(\cos(x)) \, dx \\[1ex] &= -\frac\pi4 G - \frac{\pi^2}8 \ln(2) - \int_0^{\frac\pi2} x \ln(\cos(x)) \, dx \tag{6} \end{align*}$$

I did this last integral with Fourier series, but you might find more streamlined methods here.

$$\begin{align*} \int_0^{\frac\pi2} x \ln(\cos(x)) &= \int_0^{\frac\pi2} \left(\frac\pi2 - x\right) \ln\left(\cos\left(\frac\pi2-x\right)\right) \, dx \tag{5} \\[1ex] &= \frac\pi2 \int_0^{\frac\pi2} \ln(\sin(x)) \, dx - \int_0^{\frac\pi2} x \ln(\sin(x)) \, dx \\[1ex] &= \frac\pi2 \int_0^{\frac\pi2} \ln\left(\sin\left(\frac\pi2-x\right)\right) \, dx - \int_0^{\frac\pi2} x \ln(\sin(x)) \, dx \tag{5} \\[1ex] &= \frac\pi2 \int_0^{\frac\pi2} \ln(\cos(x)) \, dx - \int_0^{\frac\pi2} x \ln(\sin(x)) \, dx \\[1ex] &= -\frac{\pi^2}4\ln(2) - \int_0^{\frac\pi2} x \ln(\sin(x)) \, dx \tag{7} \\[1ex] &= -\frac{\pi^2}4\ln(2) + \int_0^{\frac\pi2} x \left(\ln(2) + \sum_{k=1}^\infty \frac{\cos(2kx)}k\right) \, dx \\[1ex] &= -\frac{\pi^2}4 \ln(2) + \ln(2) \int_0^{\frac\pi2} x \, dx + \sum_{k=1}^\infty \frac1k \int_0^{\frac\pi2} x \cos(2kx) \, dx \\[1ex] &= -\frac{\pi^2}8\ln(2) - \sum_{k=1}^\infty \frac1{2k^2} \int_0^{\frac\pi2} \sin(2kx) \, dx \tag{1} \\[1ex] &= -\frac{\pi^2}8\ln(2) + \frac14 \sum_{k=1}^\infty \frac{(-1)^k - 1}{k^3} \\[1ex] &= -\frac{\pi^2}8\ln(2)-\frac7{16}\zeta(3) \end{align*}$$


Putting everything together, we conclude that

$$\begin{align*} I &= 2i\left(-\frac\pi4 G - \frac{\pi^2}8 \ln(2) - \left(-\frac{\pi^2}8\ln(2)-\frac7{16}\zeta(3)\right)\right) + \frac{i\pi}2 G + \frac{\pi^3}{16} \\[1ex] &= \boxed{\frac{\pi^3+14\zeta(3)\,i}{16}} \end{align*}$$


  • $(1)$ : integrate by parts
  • $(2)$ : exploit the series expansion of $\arctan(x)$
  • $(3)$ : see Dirichlet beta
  • $(4)$ : substitute $x\mapsto\tan(x)$
  • $(5)$ : substitute $x\mapsto\frac\pi2-x$
  • $(6)$ : see the integral $I$ in this answer
  • $(7)$ : see here
$\endgroup$
3
  • $\begingroup$ We may also be able to integrate $\frac{\ln(x)\arctan(x)}{1+x^2}$ by noting$$\int_0^1\frac{\ln(x)\arctan(x)}{1+x^2}\,dx=\int_0^\infty\frac{\ln(x)\arctan(x)}{1+x^2}\,dx+\frac\pi2\int_0^1\frac{\ln(x)}{1+x^2}\,dx$$and use the same contour demonstrated [here](math.stackexchange.com/a/4561985/170231) to attack the first integral on the right side. This time, we'd take$$I(a)=\frac1{2i}\int_0^\infty\frac{\log(x)\log\left(\frac{i-x}{i+x}\right)}{a^2+x^2}\,dx$$though I haven't checked if this is fruitful. $\endgroup$ Commented Nov 23, 2022 at 0:45
  • 1
    $\begingroup$ creative answer! I would have solved $J_a$ by taking $a$ derivatives of $\int_0^1 \frac{x^n}{1+x^2} dx$ with respect to n and evaluate at n=0 $\endgroup$ Commented Nov 23, 2022 at 2:15
  • $\begingroup$ @phi-rate You can find a complex-analysis solution here for a slightly different version of the integral $I(a)$ proposed here. $\endgroup$ Commented Nov 27, 2022 at 23:31

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.