My knowledge on stochastic calculus tells me that the notation $\text{d} X_t = \mu(X_t) \text{d} t + \sigma(X_t)\text{d} B_t$ is just an abbreviation of $X_t = X_0 + \int_0^t \mu(X_s) \text{d} s + \int_0^t \sigma(X_s)\text{d} B_s$.
Consider for instance $\text{d}{s_t} = c\text{d} t + \text{d}Z_t$, where here $Z_t$ is a Brownian motion and $c\sim \mathcal{N}\left(-\frac{1}{2}\sigma^2,\sigma^2\right)$ just one time (i.e., you are not drawing a $c$ each $t$ but only once). Following my background I guess that's equivalent to saying that $$ s_t = s_0 + ct + Z_t. $$
Now, I've been told that the posterior of $c$ given $s_t$ ($s_t$ is interpreted as a signal of $c$ at time $t$, that's why there's a noisy term $Z_t$ in the equation) is given by $$ c\sim \mathcal{N}\left(\hat{c}_t, \hat{\sigma}_t^2\right) $$ where $\text{d}\hat{c}_t = \hat{\sigma}_t^2\text{d}\hat{Z}_t$ and $\hat{\sigma}_t^2 = \frac{1}{\frac{1}{\hat{\sigma_t}^2}+t}$, and $\text{d}\hat{Z}_t = \text{d}s_t - \mathbb{E}_t\left[\text{d}s_t\right]$.
I'm struggling with two things:
- How are posteriors computed in continuous time? Do you know any reference where I can study this?
- What's the formal definition of $\mathbb{E}_t\left[\text{d}s_t\right]$? I'm guessing something like $\mathbb{E}_t\left[s_{t+u}\right]$ for any $u>0$... Hence, in this case, we would have that $$ \mathbb{E}_t[s_{t+u}] = s_0 + \mathbb{E}[c](t+u) + \mathbb{E}_t\left[Z_{t+u}\right] = s_0 - \frac{1}{2}\sigma^2(t+u) + Z_t $$ for all $u>0$, thanks to the fact that $\mathbb{E}_t\left[Z_{t+u}\right] = Z_t$ for all $u>0$. Using this, $$ s_{t+u} - \mathbb{E}_t[s_{t+u}] = \left(c-\frac{1}{2}\sigma^2\right)(t+u) $$ for all $u>0$. I expected some Brownian motion term in $\hat{Z}_t$, that's why I don't think I'm interpreting appropriately...
I think I provided all the context. Let me know if there's something missing. thanks!