This is solvable using vector methods. Let
$ u = DM$
$ v = DB$
Let $c \gt 0 $ be such that $AD = c v $
Also let D be the origin. Then
$ M = u $
$ B = v $
$ A = - c v $
$ N = - u $
Now connect $M$ to $B$ and $A$ to $N$, then these two lines have equations
$ \ell_{MB} = M + t (MB) = u + t (v - u) $
$ \ell_{AN} = A + s (AN) = - c v + s (- u + c v ) $
Intersecting, the two lines to find point $C$, we get the following linear system in $t,s$:
$1 - t = - s$
$t = - c + s c $
Thus, $t = - c + c (t - 1) $ from which $t = \dfrac{ 2 c}{c - 1} $
Therefore,
$ C = u + t (v - u) = (1 - t) u + t v = \dfrac{- 1 - c}{c - 1} u + \dfrac{ 2c}{c-1} v$
Now let $[.]$ denote the area, then
$[ADN] = \dfrac{1}{2} c \| v \times u \| $
and
$ [ABC] = \dfrac{1}{2} \| (CB) \times (CA) \| = \dfrac{1}{2} \| \left( \dfrac{c+1}{c-1} u + \dfrac{-c - 1 } { c-1} v \right) \times \left( \dfrac{c+1}{c -1} u + \dfrac{ - c - c^2}{ c-1} v \right) \| \\= \dfrac{1}{2} \left| \dfrac{ (c+1)(- c - c^2) + (c+1)(c+1)} {(c- 1)^2} \right| \| u \times v \| \\ =\dfrac{1}{2} \| u \times v \| \left| \dfrac{ (c+1) (- c^2 + 1 ) }{(c-1)^2} \right| $
The ratio of areas is known, this will determine $c$. Now, we must have $ c \gt 1$ to have the proper relative position of the points as in the attached figure. Therefore,
$ 6 [ABC] = 121 [ADN] $
$ 6 \ (c+1) \ ( c^2 - 1)= 121 \ c ( c - 1)^2 $
So that
$ 6 (c+1)^2 = 121 c (c-1) $
which expands to
$ 6 c^2 + 12 c + 6 = 121 c^2 - 121 c $
And finally,
$ 115 c^2 - 133 c - 6 = 0 $
The positive solution is $ c = \dfrac{6}{5} $
$ \dfrac{AB}{AD} = \dfrac{1 + c}{c} = \dfrac{11}{6} $