Let $f:\mathbb{R}\longrightarrow \mathbb{R}$ be the function $f\left( x \right)=\left| x \right|$ and $\mathcal{A}= f^{-1}\left( \mathcal{B_1} \right)$ denote the preimage $\sigma$- algebra of $f$.
show that:
a Borel-measurable function $g:\mathbb{R}\longrightarrow \mathbb{R}$ is $\mathcal{A}$-measurable $\iff$ $g$ is an even function
To show this measurability, it suffices to prove that $f^{-1}\left( E' \right)$ $\in$ $\mathcal{B_1} $ for all $E' \in \mathcal{E'}$ for a generator $\mathcal{E'}$ of $\mathcal{B_1}$.
I know roughly how to deal with measurable maps, but I have problems dealing with this two given maps. I guess we have to work with the composition $g\circ f$ at some point.
I would be grateful for help :)
$\underline{\text{my try of the other direction : }}$
Let $g$ be $\mathcal{A}$-measurable. So for any Borel set $B\subseteq \mathbb{R}$, $g^{-1}\left( B \right) \in \mathcal{A}$ .
Let $B=\left[ a,b \right]$ since $g$ is $\mathcal{A}$-measurable $g^{-1}\left( \left[ a,b \right] \right) \in \mathcal{A}$.
Like you already said the sets in $\mathcal{A}$ would look like this $\left[ a,b \right]\cup \left[ -b,a \right]$ in my case
$\Rightarrow$ g must be symmetric
$\Rightarrow$ for $\lambda \in \mathbb{R}$ holds $\lambda \in g^{-1}\left( \left[ a,b \right] \right)$ implies -$\lambda \in g^{-1}\left( \left[ a,b \right] \right)$.
so $g\left( \lambda \right) \in \left[ a,b \right] \Rightarrow g\left( -\lambda \right) \in \left[ a,b \right]$ $\Rightarrow$ g must be an even function.