1
$\begingroup$

I'm dealing with the following integral:

$$f(x,y,z) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} [a(k_1,k_2)b(x,k_1,k_2) e^{-i k_2 y}] e^{i k_1 (cz-x)} dk_1 dk_2 $$

Here, $c$ is a constant, while $a$ and $b$ are functions.

My approach has been using integration by parts where term1 is all the terms within square bracket '[]', while term2 is $e^{i k_1 (cz-x)}$.

Thus we can rewrite the expression above as :

$$ \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} [a(k_1,k_2)b(x,k_1,k_2) e^{-i k_2 y}] e^{i k_1 (cz-x)} dk_1 dk_2 \\ = \int_{-\infty}^{+\infty} [a(k_1,k_2)b(x,k_1,k_2) e^{-i k_2 y}] (\int_{-\infty}^{+\infty} e^{i k_1 (cz-x)} dk_1) dk_2 \\ - \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (\int_{-\infty}^{+\infty} e^{i k_1 (cz-x)} dk_1) \frac{\partial [a(k_1,k_2)b(x,k_1,k_2) e^{-i k_2 y}]}{\partial k_1} dk_1 dk_2 $$

Knowing: $\delta(x-\alpha) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{ip(x-\alpha)} dp$, I write the integral above as:

$$ \int_{-\infty}^{+\infty} [a(k_1,k_2)b(x,k_1,k_2) e^{-i k_2 y}] (\int_{-\infty}^{+\infty} e^{i k_1 (cz-x)} dk_1) dk_2 \\ - \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (\int_{-\infty}^{+\infty} e^{i k_1 (cz-x)} dk_1) \frac{\partial [a(k_1,k_2)b(x,k_1,k_2) e^{-i k_2 y}]}{\partial k_1} dk_1 dk_2 \\ = \int_{-\infty}^{+\infty} [a(k_1,k_2)b(x,k_1,k_2) e^{-i k_2 y}] (2\pi \delta(cz-x) ) dk_2 \\ - \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (2\pi \delta(cz-x) ) \frac{\partial [a(k_1,k_2)b(x,k_1,k_2) e^{-i k_2 y}]}{\partial k_1} dk_1 dk_2 $$

Pretty sure there is a fundamental mistake here ... the first term of the expression above now has variable $k_1$ outside the integral ??

$\endgroup$
4
  • 1
    $\begingroup$ Where did the integral with respect to $x$ come from in your very first step? $\endgroup$ Commented Sep 24, 2024 at 23:58
  • $\begingroup$ I wonder why there is a $\frac{\partial}{\partial x}$ $\endgroup$ Commented Sep 25, 2024 at 0:38
  • $\begingroup$ @JCQ : Another typo. Sorry. I had to simplify my original problem here, and changed the name of some variables. I think the typos should now be fixed. $\endgroup$ Commented Sep 25, 2024 at 1:22
  • $\begingroup$ @JohnBarber Corrected the typos. Sorry about the confusion. $\endgroup$ Commented Sep 25, 2024 at 2:34

1 Answer 1

1
$\begingroup$

When you use integration by parts, you should do $$ \begin{align} &\int_{-\infty}^\infty\left[a\left(k_1,k_2\right)b\left(x,k_1,k_2\right){\rm e}^{-ik_2y}\right]{\rm e}^{ik_1\left(cz-x\right)}{\rm d}k_1\\ =&\int_{-\infty}^\infty a\left(k_1,k_2\right)b\left(x,k_1,k_2\right){\rm e}^{-ik_2y}{\rm d}\left[\int{\rm e}^{ik_1\left(cz-x\right)}{\rm d}k_1\right]\\ =&\left[a\left(k_1,k_2\right)b\left(x,k_1,k_2\right){\rm e}^{-ik_2y}\int{\rm e}^{ik_1\left(cz-x\right)}{\rm d}k_1\right]\Bigg|_{-\infty}^\infty\\ &-\int_{-\infty}^\infty\left[\int{\rm e}^{ik_1\left(cz-x\right)}{\rm d}k_1\right]\frac{\partial\left[a\left(k_1,k_2\right)b\left(x,k_1,k_2\right){\rm e}^{-ik_2y}\right]}{\partial k_1}{\rm d}k_1 \end{align} $$ (in which I use $\displaystyle\int{\rm e}^{ik_1\left(cz-x\right)}{\rm d}k_1$ to represent a primitive function of ${\rm e}^{ik_1\left(cz-x\right)}$).
Compare it with your solution and you will see that you mistakenly use $\displaystyle\int_{-\infty}^\infty{\rm e}^{ik_1\left(cz-x\right)}{\rm d}k_1$ somewhere.

$\endgroup$
1
  • $\begingroup$ Thanks. Spotted the errors. $\endgroup$ Commented Sep 27, 2024 at 4:22

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.