In the figure, $ABCD$ is a convex quadrilateral and E and F are respectively the midpoints of diagonals $AC$ and $BD$.
Prove that:
$$AB^2 + BC^2 + CD^2 + DA^2 = AC^2 + BD^2 + (4*EF^2)$$ (Hint: Use the property of the length of the formula of a median in $\triangle BDA$, $\triangle BDC$ and $\triangle AFC$)
$$m_c = \frac{1}{2}\sqrt{2CD^2+2CB^2-DB^2}$$ $$m_a = \frac{1}{2}\sqrt{2AD^2+2AB^2-DB^2}$$ $$m_f = \frac{1}{2}\sqrt{2FC^2+2FA^2-AC^2}$$ $$EF = \frac{1}{2}\sqrt{\sqrt{2CD^2+2CB^2-DB^2}+\sqrt{2AD^2+2AB^2-DB^2}-AC^2}$$ $$4EF^2 = \sqrt{2CD^2+2CB^2-DB^2}+\sqrt{2AD^2+2AB^2-DB^2}-AC^2$$ $$4EF^2 + AC^2 - \sqrt{2CD^2+2CB^2-DB^2} = \sqrt{2AD^2+2AB^2-DB^2}$$ $$(4EF^2 + AC^2 - \sqrt{2CD^2+2CB^2-DB^2})^2 = 2AD^2+2AB^2-DB^2$$ $$(4EF^2+AC^2)^2 - 2(4EF^2 + AC^2)\sqrt{2CD^2+2CB^2-DB^2} +2CD^2+2CB^2-DB^2 = 2AD^2+2AB^2-DB^2 $$ $$(4EF^2+AC^2)^2+2CD^2+2CB^2-2AD^2-2AB^2=2(4EF^2 + AC^2)\sqrt{2CD^2+2CB^2-DB^2} $$ $$((4EF^2+AC^2)^2+2CD^2+2CB^2-2AD^2-2AB^2)^2=4(4EF^2 + AC^2)^2(2CD^2+2CB^2-DB^2)$$

$, and display equations (i.e., on a separate line with vertical space above & below) with double dollar signs, i.e.,$$. For subscripts, fractions, square roots and exponents, e.g., your first line of $m_c=\frac{1}{2}\sqrt{2b^2+2b^2-c^2}$, you can usem_c=\frac{1}{2}\sqrt{2b^2+2b^2-c^2}. Finally, including a solution in your question is basically equivalent to using asolution-verification... $\endgroup$