Note. I know that this non-linear differential equation is generalized in other posts. I wanted to check my proof, different from others.
$f’(x)=c^2-\{f(x)\}^2, \ c>0, \ f: \Bbb{R}\to\Bbb{R}, \ f(x) \in [-c, c]$. Solve $f(x)$.
The normal generalization in domain of reals goes following:
\begin{align} & \dfrac{f’(x)}{c^2-\{f(x)\}^2}=1=\dfrac{1}{2c}\left(\dfrac{f’(x)}{f(x)+c}-\dfrac{f’(x)}{f(x)-c}\right) \\ \ \\ \rightarrow \; & \ln\left| \dfrac{f(x)+c}{f(x)-c} \right| = 2cx+d, \dfrac{c+f(x)}{c-f(x)}=e^{2cx+d}=ke^{2cx}. \\ \ \\ \therefore \; & f(x)=-\dfrac{2c}{ke^{2cx}+1}+c = c\left(\dfrac{ke^{2cx}-1}{ke^{2cx}+1}\right). \end{align}
And my idea was, expanding the domain and range to complex numbers.
We already have the generalization of $k’(x)=c^2+\{k(x)\}^2$ as $k(x)=c\tan(cx+\alpha)$.
Setting $f(x)=-ig(ix)$, we have $g’(ix)=c^2+\{g(ix)\}^2$, so we have $g(ix)=c\tan(cix+\alpha)$.
Therefore, we can write $f(x)$ as $-ci\tan(cix+\alpha)$, then apply $\tan(ix)=i\dfrac{e^x-e^{-x}}{e^x+e^{-x}}$:
$f(x)=-ci \cdot i\dfrac{e^{cx+\beta}-e^{-cx-\beta}}{e^{cx+\beta}+e^{-cx-\beta}} = c\dfrac{ke^{2cx}-1}{ke^{2cx}+1}.$ ($\alpha=i\beta, e^{2\beta}=k.$)
And now I’m claiming that, the function we were finding is just a part of the function we solved. Is my claim valid?