Compute the limit (if exists) $$\lim_{(x,y)\rightarrow (0,0)}e^{\frac{-y^2}{x^4}}\sqrt[3]{y}.$$
My attempt: We can pass through polar coordinates: $$\Bigg\lvert e^{\frac{-\sin^{2}(\theta )}{\rho^{2}\cos^{4}(\theta)}}\sqrt[3]{\rho\sin (\theta)}\Bigg\rvert\leq$$ $$\leq\Bigg\lvert e^{\frac{-\sin^{2}(\theta )}{\rho^{2}\cos^{4}(\theta)}}\rho^{\frac{1}{3}}\Bigg\rvert.$$ Now, if $\theta\neq \frac{\pi}{2}$, we have that the function approach $0$ for $\rho\rightarrow 0$, and if $\theta\rightarrow \frac{\pi}{2}$ the function converges aswell (it is clear if we control the directions $y=mx$). Anyway, I'm not sure this is enough to conclude.