I am trying to understand the proof of Hankel's integral representation of $J_\alpha(x)$:
$$ J_\alpha(x) = \frac{(x/2)^\alpha}{2\pi i} \int_{c-i\infty}^{c+i\infty} t^{-\alpha -1} \exp\left(t-\frac{x^2}{4t}\right) dt \text,$$
for $\alpha > -1$ and $c > 0$ and $x \in \mathbb{C}$.
To begin, I use Hankel/Bromwich's integral representation of $\frac{1}{\Gamma}$:
$$ \frac{1}{\Gamma(s)} = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^t\, t^{-s} dt \text,$$
into the series definition of $J_\alpha (x)$:
$$ J_\alpha (x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m!\, \Gamma(m+\alpha+1)} \left(\frac{x}{2}\right)^{2m+\alpha} \text,$$
to get
$$ J_\alpha (x) = \frac{(x/2)^\alpha}{2\pi i}\sum_{m=0}^{\infty} \frac{(-1)^m}{m!} \left(\frac{x}{2}\right)^{2m} \int_{c-i\infty}^{c+i\infty} e^t \, t^{-m-\alpha-1} dt \text. \tag*{(1)} $$
If I assume the justification of the interchange of the sum and the integral, then I get the final result by recognizing the series for $e^{-x^2/4t}$.
The question is, how do you actually justify the interchange of the sum and the integral?
I tried using Tonelli-Fubini, and after taking absolute values and doing some simplifications, I need to consider the following integral:
\begin{eqnarray*} \int_{c-i\infty}^{c+i\infty} |t|^{-m-\alpha-1} |dt| &=& \int_{-\infty}^{\infty} |c+i\omega|^{-m-\alpha-1} d\omega \\ &=& \int_{-\infty}^\infty (c^2+\omega^2)^{\frac{-m-\alpha-1}{2}} d\omega \\ &=& 2 \int_0^\infty (c^2+\omega^2)^{\frac{-m-\alpha-1}{2}} d\omega \text. \end{eqnarray*}
This converges for $\alpha > 0$ (hence leading to the required justification), but what about $-1 < \alpha \leq 0$? If $m = \alpha = 0$, say, then the above integral does not converge. How to proceed from here then?
I also tried considering the expression after interchanging the sum and the integral, and found that the sum is uniformly convergent for all t on $\Re(t) = c$. Hence, if we only consider a finite interval of the contour, the interchange is justified. But then, how to justify taking the limit to infinity? Is there a result I am missing out on?
I found a similar question, but it involves a different contour than mine. Maybe you could say that the contour can be deformed, but unfortunately, I lack the knowledge to justify the same.
Any help would be greatly appreciated!
Edit: By following @peek-a-boo's advice, I am writing the infinite sum and the infinite integral as limits, that is,
$$J_\alpha(x) = \frac{(x/2)^\alpha}{2\pi i} \lim_{M \to \infty} \sum_{m=0}^M \frac{(-1)^m}{m!} \left(\frac{x}{2}\right)^{2m} \lim_{R \to \infty} \int_{c-iR}^{c+iR} e^t t^{-m-\alpha-1} dt \text.$$
Doing integration by parts on the integral, I have
$$\int_{c-iR}^{c+iR} e^t t^{-m-\alpha-1} dt = \frac{e^{c+iR}}{(c+iR)^{m+\alpha+1}} - \frac{e^{c-iR}}{(c-iR)^{m+\alpha+1}} + (m+\alpha+1) \int_{c-iR}^{c+iR} e^t t^{-m-\alpha-2} dt \text.$$
The limit as $R \to \infty$ of all three terms exists (the existence of the limit of the integral can be seen using the limit comparison test after substituting $t = c+i\omega$ and taking absolute values and comparing with $\frac{1}{\omega^{m+\alpha+2}}$).
Taking the limit of R outside the sum, I get
$$J_\alpha (x) = \frac{(x/2)^\alpha}{2\pi i} \lim_{M \to \infty} \lim_{R \to \infty} \sum_{m=0}^M \frac{(-1)^m}{m!} \left(\frac{x}{2}\right)^{2m} \left( \frac{e^{c+iR}}{(c+iR)^{m+\alpha+1}} - \frac{e^{c-iR}}{(c-iR)^{m+\alpha+1}} + (m+\alpha+1) \int_{c-iR}^{c+iR} e^t t^{-m-\alpha-2} dt \right) \text.$$
I now want to interchange the two limits. For that, I use the Moore-Osgood theorem.
I first try to show that the limit in $M$ is uniform in $R$. This can be easily shown for the first two terms inside the parentheses. For the third integral term, wishing to use Weierstrass M-test, I estimate the integral,
\begin{eqnarray*} \left|\int_{c-iR}^{c+iR} \frac{e^t (m+\alpha+1)}{t^{m+\alpha+2}} dt\right| &\leq& \int_{-R}^R \frac{e^c (m+\alpha+1)}{(c^2+\omega^2)^{\frac{m+\alpha+2}{2}}} d\omega \\ &\leq& e^c (m+\alpha+1) \int_{-\infty}^{\infty} \frac{d\omega}{(c^2+\omega^2)^{\frac{m+\alpha+2}{2}}} \\ &=& 2e^c (m+\alpha+1) \int_0^{\infty} \frac{d\omega}{(c^2+\omega^2)^{\frac{m+\alpha+2}{2}}} \text. \end{eqnarray*}
So, if I show that
$$\sum_{m=0}^\infty \int_0^\infty \frac{m+\alpha+1}{(c^2+\omega^2)^{\frac{m+\alpha+2}{2}}} d\omega < \infty \text,$$
Then, one hypothesis of the theorem is shown. But I am stuck here. How do I show that the above quantity is finite? Am I making this needlessly complicated? Is there another way to justify the interchange of the sum and the integral in (1)?