Given $\mathbf X(s_1, s_2, v) = \Delta t\mathbf v+\sigma s_1(\hat{\mathbf n}_1+\mathbf v)+\tau s_2(\hat{\mathbf n}_2+\mathbf v)$, is it possible to express $\hat{\mathbf n}_1\cdot\nabla_{\mathbf X}$ and $\hat{\mathbf n}_2\cdot\nabla_{\mathbf X}$ in terms of the $\partial_{s_1}$, $\partial_{s_2}$, and/or $\partial_{\mathbf v}$? I need to put this operator on a function in $\mathbf X$ and then do a double integral with respect to $s_1$ and $s_2$. Expressing it in terms of the derivatives of these two will simplify the integrals.
$\Delta t, \sigma$ and $\tau$ are fixed constants. $\hat{\mathbf n}_1$ and $\hat{\mathbf n}_2$ are also fixed directions and $\mathbf v$ are independent vectors from the two, not necessarily orthogonal.
I used directional derivatives and obtained $\hat{\mathbf n}_1\cdot\nabla_{\mathbf X}=\partial_{s_1}-\frac{\sigma}{\tau}\partial_{s_2}$ and $\hat{\mathbf n}_2\cdot\nabla_{\mathbf X}=\partial_{s_2}-\frac{\tau}{\sigma}\partial_{s_1}$