Evaluate the integral $$\iiint_{D} e^{(x^{2}+y^{2}+z^{2})^{3/2}} \, dV$$ where $D$ is the region above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the hemisphere $z=\sqrt{1-x^{2}-y^{2}}$ using spherical coordinates.
A. $\frac{\pi}{3}(2-\sqrt{2})(e-1)$
B. $\frac{2\pi}{3}(2-\sqrt{2})(e-1)$
C. $\frac{\pi}{3}(2+\sqrt{2})(e-1)$
D. $\frac{\pi}{3}(\sqrt{2}-2)(e-1)$
E. None of the above
The answer key says the correct answer is A, but I am not able to get a difference between two numbers in the middle term. Have I made a mistake in the bounds for phi? Or is there a mistake in the answer key
$$\iiint_\limits{D} e^{\rho^3} \rho^2 \sin\phi $$
$$\phi = \frac{\pi}{4} $$ $$\rho^2 = 1 $$
$$\int_0^{2\pi} \int_{\large\frac{\pi}{4}}^{\large\frac{\pi}{2}} \int_0^1 e^{\rho^3} \rho^2 \sin\phi \ DV $$
$$ 2\pi \left( -\cos\phi \bigg\rvert_{\large\frac{\pi}{4}}^{\large\frac{\pi}{2}} \right) \left( \frac13 e^{\rho^3} \bigg\rvert_0^1 \right) \\ = -2\pi \left( \frac{1}{\sqrt{2}} \right) \left( \frac{e - 1}{3} \right) $$
Reference photo of problem and work:


