4
$\begingroup$

There are evaluations of the above integral using complex analytic techniques, but is there a real variables way to show it? I've tried the "Feynman differentiation under the integral trick" but it seems to give more complicated integrals.

$\endgroup$
1
  • 3
    $\begingroup$ Have you tried using this: $$\begin{align} \int_{-\infty}^\infty \frac{\sinh(ax)}{\sinh(\pi x)}\cos(bx)\,dx&=4\int_0^\infty \frac{\sinh(ax)}{e^{\pi x}-e^{-\pi x}}\cos(bx)\,dx\\\\ &=4\int_0^\infty \frac{e^{-\pi x}\sinh(ax)}{(1-e^{-2\pi x})}\cos(bx)\,dx\\\\ &=4\sum_{n=0}^\infty \int_0^\infty e^{-(2n+1)\pi x}\sinh(ax)\cos(bx)\,dx\\\\ \end{align}$$I'm not sure if it leads to a tractable solution, but it is worth a try $\endgroup$ Commented Nov 20 at 17:10

1 Answer 1

6
$\begingroup$

For $|\Re(\alpha)|<\pi,$ \begin{align} f(\alpha)&=\int_{-\infty}^{\infty}\frac{\sinh(\alpha x)}{\sinh(\pi x)}\mathrm{d}x,\\ &= 2\int_0^{\infty} \frac{e^{-\pi x}(e^{\alpha x}-e^{-\alpha x})}{1-e^{-2\pi x}}\mathrm{d}x,\\ &= \frac{1}{\pi}\int_0^1 \frac{t^{1/2-1}(t^{-\alpha/2\pi}-t^{\alpha/2\pi})}{1-t}\mathrm{d}t,\tag{1}\\ &= \frac{1}{\pi}\int_0^1 \frac{(1-t^{1/2+\alpha/2\pi-1})-(1-t^{1/2-\alpha/2\pi-1})}{1-t}\mathrm{d}t,\\ &= \frac{1}{\pi}\left(\psi\left(\frac{1}{2}+\frac{\alpha}{2\pi}\right)-\psi\left(\frac{1}{2}-\frac{\alpha}{2\pi}\right)\right),\tag{2}\\ &= \cot\left(\frac{\pi}{2}-\frac{\alpha}{2}\right),\tag{3}\\ &= \tan\left(\frac{\alpha}{2}\right),\end{align} where we have used\begin{align*}&(1): t=e^{-2\pi x},\\ &(2): \psi(z)+\gamma=\int_0^1 \frac{1-t^{z-1}}{1-t}\mathrm{d}t,\qquad (\text{integral representation for the digamma function})\\ &(3): \psi(1-z)-\psi(z)=\pi\cot(\pi z).\qquad (\text{digamma reflection formula})\end{align*} Now since $\sinh(ax)\cos(bx)=\Re \sinh(a+bi)x$, given that $|a|<\pi$, the original integral is given by \begin{align} I &= \int_{-\infty}^{\infty} \frac{\sinh(ax)\cos(bx)}{\sinh(\pi x)}\mathrm{d}x,\\ &= \Re f(a+bi),\\ &= \Re \tan\left(\frac{a+bi}{2}\right),\\ &= \Re \frac{\tan(a/2)+i\tanh(b/2)}{1-i\tan(a/2)\tanh(b/2)}\cdot \frac{1+i\tan(a/2)\tanh(b/2)}{1+i\tan(a/2)\tanh(b/2)},\\ &= \frac{\tan(a/2)\text{sech}^2(b/2)}{1+\tan^2(a/2)\tanh^2(b/2)}\cdot \frac{2\cos^2(a/2)\cosh^2(b/2)}{2\cos^2(a/2)\cosh^2(b/2)},\\ &= \frac{2\sin(a/2)\cos(a/2)}{\cos^2(a/2)\cdot2\cosh^2(b/2)+\sin^2(a/2)\cdot 2\sinh^2(b/2)},\\ &= \frac{\sin a}{\cos^2(a/2)(\cosh b+1)+\sin^2(a/2)(\cosh b-1)},\\ &= \frac{\sin a}{(\cos^2(a/2)-\sin^2(a/2))+(\cos^2(a/2)+\sin^2(a/2))\cosh b},\\ &= \frac{\sin a}{\cos a+\cosh b}. \end{align}

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.