3
$\begingroup$

Simplify into reduced form the expression $$\frac{1+2α+3α^2} {(1+α)^{15}} $$ , where the minimal polynomial of $α ∈ \mathbb{C}$ over $\mathbb{Q}$ is $x^3 + x + 1$.

My Attempt: First, we can write $\frac{-1}{\alpha} = 1 + \alpha^2$, thus, we can evaluate $(1+2\alpha + 3\alpha^2)(1+\alpha^2)^{45}$. I tried to compute and find a pattern for $(1+\alpha^2)^n$, but nothing! The final answer based on Computer Algebra Systems is not at all simple. Could there be a typo in the given expression?

Thank you for your time.

$\endgroup$
0

2 Answers 2

3
$\begingroup$

The final answer based on Computer Algebra Systems is not at all simple.

Here is a finite upper bound on the length of a possible solution:


The equation $\alpha^3+\alpha+1=0$ can be rewritten $\alpha^3=-\left(1+\alpha\right)$, $\frac{1}{\alpha}=-\left(1+\alpha^2\right)$; then

$$ \begin{align} \left(1+\alpha^2\right)^5 &= 1+5\cdot\alpha^2+10\cdot\alpha^4+10\cdot\alpha^6+5\cdot\alpha^8+\alpha^{10} =\\ &= 1+5\cdot\alpha^2+\alpha^3\cdot\left(10\cdot\alpha+\alpha^3\cdot\left(10+5\cdot\alpha^2+\alpha^3\cdot\alpha\right)\right) =\\ &= 1+5\cdot\alpha^2-\left(1+\alpha\right)\cdot\left(10\cdot\alpha-\left(1+\alpha\right)\cdot\left(10+5\cdot\alpha^2-\left(1+\alpha\right)\cdot\alpha\right)\right) =\\ &= 11+9\cdot\alpha+7\cdot\alpha^2+\alpha^3\cdot\left(7+4\cdot\alpha\right) =\\ &= 11+9\cdot\alpha+7\cdot\alpha^2-\left(1+\alpha\right)\cdot\left(7+4\cdot\alpha\right) =\\ &= 4-2\cdot\alpha+3\cdot\alpha^2 \\ \left(1+\alpha^2\right)^6 &= \left(1+\alpha^2\right)\cdot\left(4-2\cdot\alpha+3\cdot\alpha^2\right) =\\ &= 4-2\cdot\alpha+7\cdot\alpha^2-\alpha^3\cdot\left(2-3\cdot\alpha\right) =\\ &= 4-2\cdot\alpha+7\cdot\alpha^2+\left(1+\alpha\right)\cdot\left(2-3\cdot\alpha\right) =\\ &= 6-3\cdot\alpha+4\cdot\alpha^2 \end{align} $$

$$ \begin{align} \left(1+\alpha^2\right)^{36} &= \left(6-3\cdot\alpha+4\cdot\alpha^2\right)^6 =\\ &= \left(36-36\cdot\alpha+57\cdot\alpha^2-\alpha^3\cdot\left(24-16\cdot\alpha\right)\right)^3 =\\ &= \left(36-36\cdot\alpha+57\cdot\alpha^2+\left(1+\alpha\right)\cdot\left(24-16\cdot\alpha\right)\right)^3 =\\ &= \left(60-28\cdot\alpha+41\cdot\alpha^2\right)^3 =\\ &= \left(60-28\cdot\alpha+41\cdot\alpha^2\right)\cdot\left(3600-3360\cdot\alpha+5704\cdot\alpha^2-\alpha^3\cdot\left(2296-1681\cdot\alpha\right)\right) =\\ &= \left(60-28\cdot\alpha+41\cdot\alpha^2\right)\cdot\left(3600-3360\cdot\alpha+5704\cdot\alpha^2+\left(1+\alpha\right)\cdot\left(2296-1681\cdot\alpha\right)\right) =\\ &= \left(60-28\cdot\alpha+41\cdot\alpha^2\right)\cdot\left(5896-2745\cdot\alpha+4023\cdot\alpha^2\right) =\\ &= 353760-329788\cdot\alpha+559976\cdot\alpha^2-\alpha^3\cdot\left(225189-164943\cdot\alpha\right) =\\ &= 353760-329788\cdot\alpha+559976\cdot\alpha^2+\left(1+\alpha\right)\cdot\left(225189-164943\cdot\alpha\right) =\\ &= 578949-269542\cdot\alpha+395033\cdot\alpha^2 \end{align} $$

$$ \begin{align} x &= \frac{1+2\cdot\alpha+3\cdot\alpha^2}{\left(1+\alpha\right)^{15}} =\\ &= \frac{\left(1+\alpha^2\right)+2\cdot\alpha\cdot\left(1+\alpha\right)}{\left(-\alpha^3\right)^{15}} =\\ &= \frac{-\frac{1}{\alpha}-2\cdot\alpha\cdot\alpha^3}{-\alpha^{45}} = \frac{1}{\alpha^{46}}+\frac{2}{\alpha^{41}} =\\ &= \left(1+\alpha^2\right)^{46}-2\cdot\left(1+\alpha^2\right)^{41} =\\ &= \left(\left(1+\alpha^2\right)^5-2\right)\cdot\left(1+\alpha^2\right)^5\cdot\left(1+\alpha^2\right)^{36} =\\ &= \left(2-2\cdot\alpha+3\cdot\alpha^2\right)\cdot\left(4-2\cdot\alpha+3\cdot\alpha^2\right)\cdot\left(578949-269542\cdot\alpha+395033\cdot\alpha^2\right) =\\ &= \left(8-12\cdot\alpha+22\cdot\alpha^2-\alpha^3\cdot\left(12-9\cdot\alpha\right)\right)\cdot\left(578949-269542\cdot\alpha+395033\cdot\alpha^2\right) =\\ &= \left(20-9\cdot\alpha+13\cdot\alpha^2\right)\cdot\left(578949-269542\cdot\alpha+395033\cdot\alpha^2\right) =\\ &= 11578980-10601381\cdot\alpha+17852875\cdot\alpha^2-\alpha^3\cdot\left(7059343-5135429\cdot\alpha\right) =\\ &= 11578980-10601381\cdot\alpha+17852875\cdot\alpha^2+\left(1+\alpha\right)\cdot\left(7059343-5135429\cdot\alpha\right) =\\ &= 18638323-8677467\cdot\alpha+12717446\cdot\alpha^2 \end{align} $$

$\endgroup$
3
$\begingroup$

With a professional tool (Pari/GP), this is purely mechanical:

(15:46) gp > a=Mod(x,x^3+x+1) %1 = Mod(x, x^3 + x + 1) (15:47) gp > (1+2*a+3*a^2)/(1+a)^15 %2 = Mod(12717446*x^2 - 8677467*x + 18638323, x^3 + x + 1) 

Of course, this is in agreement with the result of @mezzoctane.

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.