53
$\begingroup$

Prove the following integral $$I=\int\limits_{0}^{\frac{\pi}{2}}\dfrac{dx}{1+\sin^2{(\tan{x})}}=\dfrac{\pi}{2\sqrt{2}}\left(\dfrac{e^2+3-2\sqrt{2}}{e^2-3+2\sqrt{2}}\right)$$

This integral result was calculated using Mathematica and I like this integral. But I can't solve it.

My idea:

Let $$\tan{x}=t\Longrightarrow dx=\dfrac{1}{1+t^2}dt$$ so $$I=\int\limits_{0}^{\infty}\dfrac{dt}{1+\sin^2{t}}\cdot \dfrac{1}{1+t^2}$$

then I can't proceed. Can you help me? Thank you.

$\endgroup$
3
  • $\begingroup$ I tried integrating $f(z) = 1 / ((1 + \sin^2 z)(1 + z^2))$ on a contour including an interval and a semicircle, but computing the residues and summing them will be quite ugly I think. There's symmetry in the residues between the poles at $n\pi \pm i \sinh^{-1}(1)$, but it doesn't really simplify matters. $\endgroup$ Commented Mar 29, 2014 at 2:50
  • $\begingroup$ Nice identity! Esthetically very pleasing! $\endgroup$ Commented Oct 30, 2014 at 10:54
  • 2
    $\begingroup$ This is a particular case of a more general setting see my paper "Exact Evaluation of Some Highly Oscillatory Integrals. Journal of Classical Analysis, 3, Issue 1. (2013). pp. 45-57." files.ele-math.com/articles/jca-03-04.pdf $\endgroup$ Commented Oct 31, 2014 at 14:50

3 Answers 3

68
+50
$\begingroup$

First note that

$$ \begin{align} \int_{0}^{\pi /2} \frac{1}{1+ \sin^{2} ( \tan x)} \ dx &= \int_{0}^{\infty} \frac{1}{(1+\sin^{2} t)(1+t^{2})} \ dt \\ &= 2 \int_{0}^{\infty} \frac{1}{(3 - \cos 2t)(1+t^{2})} \ dt \end{align}$$

Then using the identity $$\sum_{k=0}^{\infty} a^{k} \cos(kx) = \frac{1- a \cos x}{1-2a \cos x + a^{2}} , \ \ |a|<1$$

we have

$$1 + 2 \sum_{k=1}^{\infty} a^{k} \cos(kx) = 1 + 2 \left(\frac{1-a \cos x}{1-2a \cos x +a^{2}} -1\right) = \frac{1-a^{2}}{1-2 a \cos x + a^{2}}$$

Therefore,

$$ \begin{align} \int_{0}^{\infty} \frac{1}{(1-2a \cos 2x +a^{2})(1+x^{2})} \ dx &= \frac{1}{1-a^{2}} \int_{0}^{\infty} \Big(1+2 \sum_{k=1}^{\infty} a^{k} \cos(2kx) \Big) \ \frac{1}{1+x^{2}} \ dx \\ &= \frac{\pi}{2} \frac{1}{1-a^{2}} + \frac{2}{1-a^{2}} \sum_{k=1}^{\infty} a^{k} \int_{0}^{\infty} \frac{\cos(2kx)}{1+x^{2}} \ dx \\ &= \frac{\pi}{2} \frac{1}{1-a^{2}} + \frac{\pi}{1-a^{2}} \sum_{k=1}^{\infty} \Big(\frac{a}{e^{2}} \Big)^{k} \\ &= \frac{\pi}{2} \frac{1}{1-a^{2}} + \frac{\pi}{1-a^{2}} \frac{a/e^{2}}{1-a^/e^{2}} \\ &= \frac{\pi}{2} \frac{1}{1-a^{2}} \Big(1+ \frac{2a}{e^{2}-a} \Big) = \frac{\pi}{2} \frac{1}{1-a^{2}} \frac{e^{2}+a}{e^{2}-a} \end{align}$$

Now rewrite the integral as

$$ \frac{1}{1+a^{2}} \int_{0}^{\infty} \frac{1}{(1 - \frac{2a}{1+a^{2}} \cos 2x)(1+x^{2})} \ dx$$

and let $a= 3 - 2 \sqrt{2}$.

Then

$$ \begin{align} \frac{1}{1+a^{2}} \int_{0}^{\infty} \frac{1}{(1- \frac{1}{3} \cos 2x)(1+x^{2})} \ dx &= \frac{3}{1+a^{2}} \int_{0}^{\infty} \frac{1}{(3 - \cos 2x)(1+x^{2})} \ dx \\ &= \frac{\pi}{2} \frac{1}{1-a^{2}} \frac{e^{2} + 3 - 2 \sqrt{2}}{e^{2} - 3 + 2 \sqrt{2}} \end{align}$$

which implies

$$ \begin{align} \int_{0}^{\pi /2} \frac{1}{1+\sin^{2} (\tan x)} \ dx &= \frac{\pi}{3} \frac{1+a^{2}}{1-a^{2}}\frac{e^{2} + 3 - 2 \sqrt{2}}{e^{2} - 3 + 2 \sqrt{2}} \\ &= \frac{\pi}{3} \frac{3}{2 \sqrt{2}}\frac{e^{2} + 3 - 2 \sqrt{2}}{e^{2} - 3 + 2 \sqrt{2}} \\ &= \frac{\pi}{2 \sqrt{2}}\frac{e^{2} + 3 - 2 \sqrt{2}}{e^{2} - 3 + 2 \sqrt{2}} \end{align}$$

$\endgroup$
12
  • 1
    $\begingroup$ In the fourth display line, the factor $1/(1+x^2)$ seems to have been omitted from the integrand on the RHS. The deduction of the next two lines assumes the result $\int_0^\infty\dfrac{\cos2kx}{1+x^2}\mathrm{d}x=\dfrac{\pi}{2\mathrm{e}^{2k}}.$ To me, this looks nontrivial; and perhaps a proof is called for. $\endgroup$ Commented Mar 29, 2014 at 9:24
  • 2
    $\begingroup$ Oh, nevermind. Nice manipulation of the cosine series. $\endgroup$ Commented Mar 29, 2014 at 11:53
  • 1
    $\begingroup$ Very Nice method RV ! $\endgroup$ Commented May 4, 2014 at 20:56
  • 1
    $\begingroup$ @RasmusAndersen Because I knew it was likely that with the proper choice for $a$, the integrand $\frac{1}{(1-2a \cos 2x +a^{2})(1+x^{2})} $ could be manipulated into the form $ \frac{1}{(3-\cos 2x)(1+x^{2})}$. $\endgroup$ Commented Jul 24, 2023 at 16:42
  • 1
    $\begingroup$ @RasmusAndersen All we're doing is replacing $x$ on both sides of the equation with $2x$. Since the original equation holds for $x \in \mathbb{R}$, the modified equation holds for $2x \in \mathbb{R}$ (which means it also holds for $x \in \mathbb{R}$.) Another example would be the Taylor series $e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} $, which converges for all real values of $x$. If you wanted the Taylor series for $e^{\pi x}$, all you would need to do is replace $x$ on both sides with $\pi x$. $\endgroup$ Commented Jul 24, 2023 at 19:13
15
$\begingroup$

Let $f : [-1,1] \to \mathbb{R}$ be any continuous even function on $[-1,1]$. Consider following integral

$$I_f \stackrel{def}{=} \int_0^{\pi/2} f(\sin(\tan x)) dx = \frac12 \int_{-\pi/2}^{\pi/2} f(\sin(\tan x)) dx = \frac12 \int_{-\infty}^{\infty} f(\sin y)\frac{dy}{1+y^2} $$ where $y = \tan x$. Since $f(\cdot)$ is even, $f(\sin y)$ is periodic in $y$ with period $\pi$. We can rewrite $I_f$ as $$ I_f = \frac12 \int_{-\pi/2}^{\pi/2} f(\sin y)g(y) dy $$ where $$g(y) = \sum_{n=-\infty}^\infty \frac{1}{1+(y+n\pi)^2} = \frac{1}{2i}\sum_{n=-\infty}^\infty \left(\frac{1}{n\pi + y - i} - \frac{1}{n\pi+y + i}\right)$$ Let $z = \tan y$ and $T = -i\tan i = \tanh 1 = \frac{e^2-1}{e^2+1}$. Recall following expansion of $\cot y$,

$$\cot y = \frac{1}{y} + \sum_{n \in \mathbb{Z} \setminus \{0\}}\left( \frac{1}{y+n\pi} - \frac{1}{n\pi}\right)$$

We find $$g(y) = \frac{1}{2i}(\cot(y-i) - \cot(y+i)) = \frac{1}{2i} \left(\frac{1 + izT}{z - iT} - \frac{1 - izT}{z + iT}\right) = \frac{(z^2+1)T}{z^2+T^2} $$ As a result, we can get rid of the explicit trigonometric dependence in $I_f$: $$ I_f = \frac12 \int_{-\infty}^\infty f\left(\frac{z}{\sqrt{1+z^2}}\right) \frac{(z^2+1)T}{z^2+T^2} \frac{dz}{1+z^2} = \frac{T}{2}\int_{-\infty}^\infty f\left(\frac{z}{\sqrt{1+z^2}}\right) \frac{dz}{z^2+T^2} $$ For any $a > 0$, let $b = \sqrt{a^2+1}$ and apply above formula to $f_{a}(z) \stackrel{def}{=} \frac{1}{a^2+z^2}$, we have $$\begin{align} I_{f_a} &= \frac{T}{2}\int_{-\infty}^\infty \frac{z^2+1}{a^2+b^2z^2}\frac{dz}{z^2+T^2}\\ &= \frac{T}{2(a^2-b^2T^2)}\int_{-\infty}^\infty \left(\frac{1-T^2}{z^2+T^2} - \frac{1}{a^2+b^2z^2}\right) dz\\ &= \frac{T}{2(a^2-b^2T^2)}\left((1-T^2)\frac{\pi}{T} - \frac{\pi}{ab}\right) = \frac{\pi}{2ab}\frac{b + aT}{a + bT} \end{align} $$ When $a = 1$, $b$ becomes $\sqrt{2}$ and $I_{f_1}$ reduces to the integral $I$ we want to compute, i.e. $$I = I_{f_1} = \frac{\pi}{2\sqrt{2}}\frac{\sqrt{2}+\frac{e^2-1}{e^2+1}}{1+\sqrt{2}\frac{e^2-1}{e^2+1}} = \frac{\pi}{2\sqrt{2}}\frac{(\sqrt{2}+1)e^2 + (\sqrt{2}-1)}{(\sqrt{2}+1)e^2 - (\sqrt{2}-1)} = \frac{\pi}{2\sqrt{2}}\frac{e^2 + (\sqrt{2}-1)^2}{e^2 - (\sqrt{2}-1)^2} $$

$\endgroup$
1
  • $\begingroup$ Somehow our methods have something in common, but i don't really how your answer formally connects to by more straightforward approach. But nice work (+1) $\endgroup$ Commented Mar 31, 2015 at 1:01
7
$\begingroup$

I hope nobody cares that i exhume this question, but i found it interesting that it is possible to obtain this integral by a relativly straightforward contour integration method.

Observe that,following the question opener and using parity, that we can rewrite the integral as

$$ \frac{1}{2}\int^{\infty}_{-\infty}\frac{1}{1+t^2}\frac{1}{1+\sin^2(t)} $$

It is now easy to show that the poles are

$$ t_{\pm}=\pm i\\ t_{n\pm}=\pi n\pm i \text{arcsinh(1)} $$

so we have two isolated poles and the rest lies on two straight lines paralell to the real axis.

Because the integrand interpreted as a complex function converges as $|z|\rightarrow\infty$ we can choose a semicircle closed in the upper half plane as an integration contour. We find

$$ I=\pi i\sum_{n=-\infty}^{\infty}\text{res}(t_{n+})+\pi i \text{res}(t_{+}) $$

Where the residues are given by $$ \text{res}(t_{+})=\frac{i}{2}\frac{1}{2 \sinh^2(1)-1}\\ \text{res}(t_{n+})=\frac{-i}{2\sqrt{2}}\frac{1}{1+(n \pi+i \text{arcsinh(1)} )^2} $$

Therefore the integral reduces to the following sum

$$ I=\frac{\pi}{2\sqrt{2}} \sum_{n=-\infty}^{\infty} \frac{1}{1+(n \pi+i \text{arcsinh(1)})^2} -\frac{\pi}{2}\frac{1}{2 \sinh^2(1)-1} $$

Using a partial fraction decomposition together with the Mittag-Leffler expansion of $\coth(x)$, this can be rewritten as

$$ I=\frac{\pi}{4\sqrt{2}} \sum_{n=-\infty}^{\infty} \frac{-i}{-i+n \pi+ \text{arcsinh(1)}}+ \frac{i}{i+n \pi+ i\text{arcsinh(1)}}-\frac{\pi}{2}\frac{1}{2 \sinh^2(1)-1}=\\ \frac{\sqrt{2} \pi}{8} \left( \coth \left(1-\text{arcsinh(1)}\right)+ \coth \left(1+\text{arcsinh(1)}\right)\right)-\frac{\pi}{2}\frac{1}{2 \sinh^2(1)-1}\\ $$

Or $$ I\approx 1.16353 $$

Which matches the claimed result.

One can also compute this explicitly noting that $\text{arcsinh(1)}=\log(1+\sqrt{2})$ (*). But this is rather tedious so i just leave this step to the reader and conclude that $$ I=\frac{e^2+3-2\sqrt{2}}{e^2-3+2\sqrt{2}} $$

Appendix

Just to give some details of the last part of the calculations:

Using (*) the part stemming from the sum is $$ \frac{\pi}{4\sqrt{2}}\left(\frac{ \frac{1+\sqrt{2}}{e}+\frac{e}{1+\sqrt{2}}}{ \frac{e}{1+\sqrt{2}}-\frac{1+\sqrt{2}}{e}}+\frac{e \left(1+\sqrt{2}\right)+\frac{1}{1+\sqrt{2} e} }{\left(1+\sqrt{2}\right) e-\frac{1}{\left(1+\sqrt{2}\right) e}}\right)=\\ \frac{\left(e^4-1\right) \pi }{2 \sqrt{2} \left(1-6 e^2+e^4\right)} $$

The part of the single pole gives

$$ \frac{\pi }{2 \left(\left(\frac{e}{2}-\frac{1}{2 e}\right)^2-1\right)}=\frac{2 e^2 \pi }{1-6 e^2+e^4} $$

Adding both terms and factorizing then yields the desired result

$\endgroup$
1
  • $\begingroup$ Nice solution. +1. Is there a way to choose another contour than the semicircle to arrive at finite number of residues without the current infinite number of residues and the expansion of $\coth x$ as bridge? $\endgroup$ Commented Sep 24, 2016 at 8:26

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.