5
$\begingroup$

How we can solve this?$\newcommand{\sech}{\operatorname{sech}}$ $$ \int \sech^4 x \, dx. $$ I know we can solve the simple case $$ \int \sech \, dx=\int\frac{dx}{\cosh x}=\int\frac{dx\cosh x}{\cosh ^2x}=\int\frac{d(\sinh x)}{1+\sinh^2 x}=\int \frac{du}{1+u^2}=\tan^{-1}\sinh x+C. $$ I am stuck with the $\sech^4$ though. Thank you

$\endgroup$

2 Answers 2

8
$\begingroup$

Note that $$ \int \DeclareMathOperator{sech}{sech}{\sech}^4x\,dx=\int{\sech}^2{x}\cdot(1-\tanh^2x)\,dx $$ Letting $u=\tanh x$ gives $du={\sech}^2x$ so $$ \int{\sech}^4x\,dx=\int(1-u^2)\,du=u-\frac{u^3}{3}+C=\tanh x-\frac{1}{3}\tanh^3x+C $$

$\endgroup$
3
  • 1
    $\begingroup$ How come mathematica says $$ \int \frac{dx}{\cosh^4 x}=\left(\frac{2\tanh x}{3}+\frac{1}{3}\tanh x \text{sech}^2x\right)? $$ Are they equivalent? It seems the first factor $\tanh x$ and $2/3 \tanh x$ are not. However I do agree with your method. Thanks... $\endgroup$ Commented May 12, 2014 at 20:24
  • $\begingroup$ Plug $\DeclareMathOperator{sech}{sech}{\sech}^2(x)=1-\tanh^2x$ into your formula. $\endgroup$ Commented May 12, 2014 at 20:27
  • $\begingroup$ Thanks a lot. I get it now $\endgroup$ Commented May 12, 2014 at 20:37
6
$\begingroup$

Since \begin{align} \partial_{x} \left[ \tanh^{m}(ax) \right] = am\ sech^{2}(ax) \ \tanh^{m-1}(ax) \end{align} then \begin{align} sech^{4}(ax) &= sech^{2}(ax) (1 - \tanh^{2}(ax) ) \\ &= \partial_{x} \left[ \frac{1}{a} \tanh(ax) \right] - \partial_{x} \left[ \frac{1}{3a} \tanh^{3}(ax) \right] \\ &= \partial_{x} \left[ \frac{1}{a} \tanh(ax) - \frac{1}{3a} \tanh^{3}(ax) \right]. \end{align} Upon integration of both sides the result is \begin{align} \int sech^{4}(ax) \ dx = \frac{1}{a} \tanh(ax) - \frac{1}{3a} \tanh^{3}(ax). \end{align}

$\endgroup$
1
  • $\begingroup$ THanks for the other solution +1 $\endgroup$ Commented May 13, 2014 at 0:16

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.