3
$\begingroup$

Is there a closed form (non-recursive) expression for the definite integral

$$\int_0^1 dz \frac{z^n}{z-a}, \qquad n\in\mathbb{Z}_+ \text{ and } a\notin (0,1)$$

for general $n$ and $a$ given in terms of logarithms? Mathematica is able to give them for any given integer $n$ (I made a table for $n=\{0,\ldots, 5\}$), but I can't find in the literature how the incomplete Beta function is related to logarithms:

enter image description here

Anyone pointing me to the appropriate formulae in the NIST Handbook of Mathematical functions or in Gradshteyn and Ryzhik would be fantastic.

$\endgroup$
3
  • $\begingroup$ Depends. What do you consider as a closed form? $\endgroup$ Commented Oct 19, 2014 at 13:49
  • $\begingroup$ That's a good question, and something that I should have mentioned. The answer appears to be a sum of polynomial in $1/a$ and logarithm. So I guess I am looking for something of the form: $\sum_n c_n(1/a)^n + \text{logs}$. where the $c_n$'s are explicitly given (in terms of factorials, or Harmonic numbers, etc..) $\endgroup$ Commented Oct 19, 2014 at 13:52
  • $\begingroup$ If you want it in terms of factorials then the Beta function can be written in terms of the Gamma function which can be written in terms of factorials thus a "closed" form. $\endgroup$ Commented Oct 19, 2014 at 13:54

2 Answers 2

3
$\begingroup$

Solution: You may write $$\begin{align} \int_0^1 \frac{z^n}{z-a}dz&=\int_0^1 \frac{z^n-a^n}{z-a}dz+a^n\int_0^1 \frac{1}{z-a}dz\\ &=\int_0^1 \sum_{k=0}^{n-1}a^{n-1-k}z^kdz+a^n\int_0^1 \frac{1}{z-a}dz\\ &=\sum_{k=0}^{n-1}a^{n-k-1}\int_0^1 z^kdz+a^n\left. \log (z-a)\right|_0^1\\ &=\sum_{k=1}^n\frac{a^{n-k}}{k}+a^n \log \left(1-\frac1a\right) \end{align} $$

$\endgroup$
0
0
$\begingroup$

$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$ $\ds{\int_{0}^{1}\dd z\,{z^{n} \over z - a}\,,\qquad n\in{\mathbb Z}_{+}\ \mbox{and}\ a \not\in \pars{0,1}:\ {\large ?}}$.

Lets $\ds{{\cal I}_{n} \equiv \int_{0}^{1}{z^{n} \over z - a}\,\dd z}$ such that

\begin{align} {\cal I}_{n}&=\int_{0}^{1}{z^{n - 1}\pars{z - a} + a z^{n- 1} \over z - a}\,\dd z ={1 \over n} + a{\cal I}_{n - 1} \end{align}

Then, \begin{align} {\cal I}_{n}&={1 \over n} + {a \over n - 1} + a^{2}\,{\cal I}_{n - 2} ={1 \over n} + {a \over n - 1} + {a^{2} \over n - 2} + a^{3}\,{\cal I}_{n - 3} \\[5mm]&=\cdots=\sum_{k\ =\ 0}^{n - 1}{a^{k} \over n - k} + a^{n}\,{\cal I}_{0} \quad\mbox{where}\quad {\cal I}_{0}=\int_{0}^{1}{\dd z \over z - a}=\ln\pars{\verts{1 - {1 \over a}}} \end{align}

$$\color{#66f}{\large% \int_{0}^{1}{z^{n} \over z - a}\,\dd z} =\color{#66f}{\large{\sum_{k\ =\ 0}^{n - 1}{a^{k} \over n - k} + a^{n}\,\ln\pars{\verts{1 - {1 \over a}}}}}\,,\qquad n\in{\mathbb Z}_{+}\ \mbox{and}\ a \not\in \pars{0,1} $$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.