15
$\begingroup$
  • The below problem is taken from Joseph Edwards book Integral Calculus for beginners.

How does one show: $$5 \int \frac{\sin(x)}{\sin(5x)} \ dx= \sin\left(\frac{2\pi}{5}\right) \cdot \log\left\{\frac{\sin\left(x-\frac{2\pi}{5}\right)}{\sin\left(x+\frac{2\pi}{5}\right)}\right\} -\sin\left(\frac{\pi}{5}\right) \cdot \log\left\{\frac{\sin\left(x-\frac{\pi}{5}\right)}{\sin\left(x+\frac{\pi}{5}\right)}\right\} $$

  • Splitting $\sin{(5x)}$ as $\sin{(4x+x)}$ doesn't seem to be of much help since then we have a big term in the denominator after expansion.
$\endgroup$
2

4 Answers 4

7
$\begingroup$

Wolfram Mathematica $9.0$ is able to evaluate this indefinite integral. Here is the output

\begin{equation} \sqrt{\frac{5+\sqrt{5}}{2}}{\rm{artanh}}\left(\frac{\left(\sqrt{5}-3\right)\tan x}{\sqrt{10-2\sqrt{5}}}\right)+\sqrt{\frac{5-\sqrt{5}}{2}}{\rm{artanh}}\left(\frac{\left(\sqrt{5}+3\right)\tan x}{\sqrt{10+2\sqrt{5}}}\right)+C \end{equation}

The complete proof can be downloaded here.

Using the facts \begin{align} \sin\left(\frac{\pi}{5}\right)&=\frac{1}{2}\sqrt{\frac{5-\sqrt{5}}{2}}\\[10pt] \cos\left(\frac{\pi}{5}\right)&=\frac{\sqrt{5}+1}{4}\\[10pt] \sin\left(\frac{2\pi}{5}\right)&=\frac{1}{2}\sqrt{\frac{5+\sqrt{5}}{2}}\\[10pt] \cos\left(\frac{2\pi}{5}\right)&=\frac{\sqrt{5}-1}{4}\\[10pt] \sin\left(\alpha\pm\beta\right)&=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta\\[10pt] {\rm{artanh}}\,\theta&=\frac{1}{2}\ln\left(\frac{1+\theta}{1-\theta}\right)\,,\quad\mbox{for}\,|\theta|<1 \end{align}

We can derive the following answer \begin{equation} 5 \int \frac{\sin(x)}{\sin(5x)} \ dx= \sin\left(\frac{2\pi}{5}\right) \cdot \ln\left\{\frac{\sin\left(x-\frac{2\pi}{5}\right)}{\sin\left(x+\frac{2\pi}{5}\right)}\right\} -\sin\left(\frac{\pi}{5}\right) \cdot \ln\left\{\frac{\sin\left(x-\frac{\pi}{5}\right)}{\sin\left(x+\frac{\pi}{5}\right)}\right\}+C \end{equation}

$\endgroup$
2
$\begingroup$

Not a complete answer, but I think the factoring technique might be helpful. Let's use $s$ to denote $\sin(x)$. You can derive $\sin(5x)=5s-20s^3+16s^5$. We know $$5s-20s^3+16s^5=16s(s-\sin(\pi/5))(s-\sin(2\pi)/5)(s-\sin(3\pi/5))(s-\sin(4\pi/5))=16s(s-\sin(\pi/5))^2(s-\sin(2\pi/5))^2$$ by factor theorem(notice $\sin(n\pi/5)$ are roots of the polynomial). You can probably do partial fraction that leads to the final answer now.

$\endgroup$
2
$\begingroup$

Note

\begin{align} &\frac{\sin x}{\sin5x}=\frac1{4\left(\cos2x- \cos\frac{2\pi}{5}\right) \left(\cos2x- \cos \frac{4\pi}{5}\right)}\\=&\ \frac1{2\sqrt5}\bigg(\frac1{\cos2x- \cos\frac{2\pi}{5} } -\frac1{\cos2x- \cos\frac{4\pi}{5} } \bigg)\\ =&\ \frac1{4\sqrt5}\bigg(\frac1{\sin(\frac\pi5+x)\sin(\frac\pi5-x) }-\frac1{\sin(\frac{2\pi}5+x)\sin(\frac{2\pi}5-x) } \bigg)\\ =&\ \frac15\sin\frac\pi5\left(\cot(\frac\pi5+x)+\cot(\frac\pi5-x) \right)-\frac15\sin\frac{2\pi}5\left(\cot(\frac{2\pi}5+x)+\cot(\frac{2\pi}5-x) \right) \end{align} Then, apply $(\ln \sin t)’= \cot t$ to integrate $$\int \frac{\sin x}{\sin5x}= \frac15\sin\frac{2\pi}5\>\ln \frac{\sin(\frac{2\pi}5-x) }{\sin(\frac{2\pi}5+x) } - \frac15\sin\frac\pi5\>\ln \frac{\sin(\frac\pi5-x) }{\sin(\frac\pi5+x) }+C $$

$\endgroup$
2
$\begingroup$

First of all, we use De Moivres’ Theorem to express $\sin 5x $ in terms of $\cos x$ and $\sin x$. $$ \begin{aligned} &\cos 5 x+i \sin 5 x\\=&(\cos x+i \sin x)^{5} \\ =& \cos^{5} x+5 i \cos ^{4} x \sin x-10 \cos^{3} x \sin ^{2} x-10 i \cos ^{2} x \sin ^{3} x+5 \cos x \sin ^{4} x+i \sin ^{5} x \end{aligned} $$ Comparing the imaginary parts on both sides yields $$ \sin 5 x=5 \cos ^4 \sin x-10 \cos ^{2} x \sin ^{3} x+\sin ^{5} x $$

$$ \begin{aligned} \because \int\frac{\sin x}{\sin 5 x} d x &=\int \frac{1}{5 \cos ^{4} x-10 \cos ^{2} x \sin ^{2} x+\sin ^{4} x} d x \\ &=\int \frac{\sec ^{4} x d x}{5-10 \tan ^{2} x+\tan ^{4} x} \\ &=\int \frac{1+t^{2}}{t^{4}-10 t^{2}+5}dt, \quad \textrm{ where }t=\tan x. \end{aligned} $$

Playing a small trick on the integrand yields

$$ \begin{aligned} \int \frac{\sin x}{\sin 5 x}dx&=\int \frac{1+\frac{1}{t^{2}}}{t^{2}+\frac{5}{t^{2}}-10} d t\\ &= \int \frac{\frac{\sqrt{5}+1}{2}\left(1+\frac{\sqrt{5}}{t^{2}}\right)+\frac{\sqrt{5}-1}{2}\left(1-\frac{\sqrt{5}}{t^{2}}\right)}{t^{2}+\frac{5}{t}-10} d t\\ &=\frac{\sqrt{5}+1}{2} \int \frac{d\left(t-\frac{\sqrt{5}}{t}\right)}{\left(t-\frac{\sqrt{5}}{t}\right)^{2}-(10-2 \sqrt{5})}+\frac{\sqrt{5}-1}{2} \int \frac{d\left(t+\frac{\sqrt{5}}{t}\right)}{\left(t+\frac{\sqrt{5}}{t}\right)^{2}-(10+2 \sqrt{5})}\\&=\frac{\sqrt{5}+1}{2 \sqrt{10-2 \sqrt{5}}} \tan ^{-1}\left(\frac{t-\frac{\sqrt{5}}{t}}{\sqrt{10-2 \sqrt{5}}}\right)+\frac{\sqrt{5}-1}{4 \sqrt{10+2 \sqrt{5}}} \ln \left|\frac{t+\frac{\sqrt{5}}{t}-\sqrt{10+2 \sqrt{5}}}{t+\frac{\sqrt{5}}{t}+\sqrt{10+2 \sqrt{5}}}\right|+C\\&=\frac{\sqrt{5}+1}{2 \sqrt{10-2 \sqrt{5}}} \tan ^{-1}\left(\frac{\tan^2 {x}-\sqrt{5} }{\tan {x}\sqrt{10-2 \sqrt{5}}}\right)\\&+\frac{\sqrt{5}-1}{4 \sqrt{10+2 \sqrt{5}}} \ln \left| \frac{\tan ^{2} x-\sqrt{10+2 \sqrt{5}} \tan x+ \sqrt{5}}{\tan ^{2} x+\sqrt{10+2 \sqrt{5}} \tan x+\sqrt{5}}\right|+C \end{aligned} $$

$\endgroup$

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.