19
$\begingroup$

I need to find an explicit expression in radicals for the real root of the quintic equation

1152921504606846976 + 99923616732282880 x + 3740744716124160 x^2 - 2794496983040 x^3 + 2257838080 x^4 + x^5 == 0 

I tried to use Radicals.nb from here. SolvableQ says the equation is solvable in radicals, but SolveQuintic returns $Failed for some reason. Could you please help me to find an explicit solution, and suggest how to fix this apparent bug in SolveQuintic?

The quintic equation is not completely random, its real root is actually the value of

With[{q = -Exp[-π √47]}, QPochhammer[q, q^2]^24/q]] 

and should have an explicit representation in radicals.

$\endgroup$
5
  • $\begingroup$ Were you at least able to perform a Tschirnhaus transformation on it? $\endgroup$ Commented Dec 15, 2016 at 1:49
  • $\begingroup$ I tried to perform it using function from TschirnhausTransformation.nb, but it looks Mathematica chokes on too large expressions. $\endgroup$ Commented Dec 15, 2016 at 3:36
  • $\begingroup$ Could try code from this Wolfram Communiity post. $\endgroup$ Commented Dec 15, 2016 at 22:44
  • $\begingroup$ @DanielLichtblau Isn't that post about radical denesting? How do I apply it to solving quintics? $\endgroup$ Commented Dec 15, 2016 at 22:58
  • $\begingroup$ Yes, it is about denesting. I guess I had a hope that it might be able to go from min poly to radical expression. $\endgroup$ Commented Dec 16, 2016 at 18:35

3 Answers 3

7
$\begingroup$

I found a way to fix the function provided by @VladimirReshetnikov. Basically if you read the paper it says If T = 0, which implies that ε is in Q, we change the sign of ε. (Well, ε is F in his code.) So I just changed from

F = Sqrt[ 5 (40 x p - 120 w q + p^2 (-24 v + 40 q^2) + 100 v r + 332 q^2 r - 300 u s + 125 s^2 + p^3 (-80 r - 24 t) + 24 q^2 t + p (88 u q + 160 r^2 - 480 q s + 100 r t))]; 

to

F = -Sqrt[ 5 (40 x p - 120 w q + p^2 (-24 v + 40 q^2) + 100 v r + 332 q^2 r - 300 u s + 125 s^2 + p^3 (-80 r - 24 t) + 24 q^2 t + p (88 u q + 160 r^2 - 480 q s + 100 r t))]; 

which then allowed to solve

QuinticToRadicals[Root[-6 - 10 #1 - 10 #1^2 + #1^5 &, 1]]

Anyway, here is the version with If condition (I just added If[(g + h/F) == 0, F = -F]; after F =).

 QuinticToRadicals[root_Root] := Block[{a, b, c, d, e, f, h, p, q, r, s, t, u, v, w, x, z, g, F, A, B, G, H, L, M, P, Q, R, S}, If[! TrueQ[Element[root, Algebraics]], Return[root]]; With[{m = MinimalPolynomial[root, z]}, If[! PolynomialQ[m, z] || Exponent[m, z] != 5, Return[root]]; {f, e, d, c, b, a} = CoefficientList[m, z]]; p = (5 a c - 2 b^2)/(5 a^2); q = (25 a^2 d - 15 a b c + 4 b^3)/(25 a^3); r = (125 a^3 e - 50 a^2 b d + 15 a b^2 c - 3 b^4)/(125 a^4); s = (3125 a^4 f - 625 a^3 b e + 125 a^2 b^2 d - 25 a b^3 c + 4 b^5)/(3125 a^5); G = Select[ Solve[{(p^2 + 12 r + 4 t) Discriminant[ z^5 + p z^3 + q z^2 + r z + s, z] == (2 t^3 + 8 t^2 r + (2 p q^2 - 6 p^2 r + 24 r^2 - 50 q s) t - 2 q^4 + 13 p q^2 r - 16 (p^2 - 4 r) r^2 - 5 q (3 p^2 + 40 r) s + 125 p s^2)^2, 4 r^2 + 2 q (p q + 5 s + 2 u) + 5 x == t^2 + 2 p^2 (3 r + t) + 2 p v, 3 p^4 (2 r + t) + 5 p s (50 s + 9 u) + 3 q^2 (18 p r + 5 p t + 4 v) + q (-20 s (7 r + 3 t) + 6 r u + p w) + 2 (40 r^3 + 16 r^2 t + t^3 + 25 s w + 10 r x) == 14 q^4 + 28 p r v + p^2 (52 r^2 + 36 r t + q (3 p q + 41 s + 3 u) - 3 p v + 3 x), q^4 (30 r - 4 t) + t^4 + p^4 (22 r^2 - 6 q s + 4 r t) + q^2 (50 s^2 - 155 s u - 29 r v) + p^3 (-4 q^2 (4 r + t) + 9 s u + 4 r v) + p (q^3 (-132 s + 8 u) - 5 s (110 r s - 5 s t + 28 r u) + 16 r^2 v + q (105 s v + 8 r w) - 3 q^2 (14 r^2 + 5 r t - 3 x)) + p^2 (4 q^4 - 68 r^3 + 16 r^2 t + q (404 r s + 79 s t - 17 r u) - 4 q^2 v - 15 s w - 19 r x) == 16 r^4 + 3 q^3 w + 20 r s (4 q t + 5 w) + 4 r^2 (5 q s - 17 q u - 15 x) + 25 s (5 s v + 9 q x), 625 s^3 (10 s + u) + q^5 (858 s + 20 u) + p^5 (198 s^2 + 5 q^2 (5 r + t) - 15 r v) + q^2 (5 s (2140 r s + 365 s t + 43 r u) - 12 r^2 v) + q^4 (-34 r^2 - 43 r t + 22 x) + 8 r^2 (120 r^3 + 64 r^2 t + 25 s w + 30 r x) + p^3 (q^3 (181 s - 5 u) + s (-810 r s + 355 s t - 147 r u) + 168 r^2 v - q (212 s v + 11 r w) - q^2 (22 r (13 r + 5 t) + 5 x)) + p^4 (-5 q^4 + q (-491 r s - 200 s t + 15 r u) + 5 q^2 v + 18 s w + r (4 r (91 r + 50 t) + 15 x)) + p^2 (5 q^4 (19 r + 3 t) + 2 q r (2060 r s + 864 s t - 45 r u) + 325 s^2 v + q^2 (3005 s^2 + 351 s u - 83 r v) + 3 q^3 w + 290 q s x - 2 r (544 r^3 + 216 r^2 t + 265 s w + 76 r x)) == 15 p^6 r (2 r + t) + 2 (t^5 + 750 r s^2 v) + q^3 (620 s v + 41 r w) + q (2640 r^2 s t + 8 r^3 (780 s - 19 u) + 2375 s^2 w + 700 r s x) + p (12 q^6 + 20 r s (-45 r s + 10 s t + 21 r u) + q^3 (4095 r s + 752 s t + 43 r u) - 10 q^4 v + 176 r^3 v + 5 q s (635 s (5 s + u) - 312 r v) - 124 q r^2 w + 1375 s^2 x - q^2 (612 r^3 + 220 r^2 t + 110 s w - 27 r x)), Element[t, Rationals]}, {t, u, v, w, x}], FreeQ[ConditionalExpression], 1]; If[G == {}, Return[root], G /. Rule -> Set]; g = -3 p^2 (-v + q^2) + 20 v r - 50 u s + 125 s^2 + 3 q^2 (-7 r + t) + p^3 (4 r + 3 t) + p (16 r^2 - q (u - 40 s) + 12 r t); h = 366 v q^3 - 402 q^5 - 748 u q^2 r + 440 w r^2 - 448 q r^3 - 12 p^5 s - 275 w q s + 2100 v r s - 1925 q^2 r s - 4875 u s^2 - 1875 s^3 + x (-65 p^2 q - 550 q r + 875 p s) + 524 q r^2 t - 1040 q^2 s t + p^4 q (158 r + 85 t) + p^3 (85 v q - 85 q^3 + 4 u r - 1462 r s - 418 s t) + p (41 w q^2 - 298 v q r - 56 u r^2 + 5 q s (419 u + 35 s) + 10 r s (290 r + 159 t) + q^3 (896 r + 419 t)) - p^2 (58 w r + 520 v s + q (73 u q - 142 r^2 + 159 q s + 440 r t)); F = Sqrt[ 5 (40 x p - 120 w q + p^2 (-24 v + 40 q^2) + 100 v r + 332 q^2 r - 300 u s + 125 s^2 + p^3 (-80 r - 24 t) + 24 q^2 t + p (88 u q + 160 r^2 - 480 q s + 100 r t))]; If[(g + h/F) == 0, F = -F]; A = Sqrt[5/2 (g + h/F)]; B = 1/(A F) 5 (42 q^5 + 12 p^5 s + 3 p^4 q (14 r + 5 t) + q^2 (550 r s + 515 s t - 182 r u) - 6 q^3 v + p^3 (-15 q^3 + 492 r s + 213 s t - 4 r u + 15 q v) - 50 s (25 s^2 - 60 s u + 22 r v) - 40 r^2 w + 650 q s w + p^2 (-3 q^2 (52 s + 9 u) + 195 s v - 22 r w + q (358 r^2 + 50 r t - 35 x)) - 8 q r (29 r^2 + 23 r t + 25 x) + p (q^3 (-246 r + t) + 5 q s (565 s - 54 u) - 4 r (350 r s + 235 s t - 24 r u) + 68 q r v + 19 q^2 w - 250 s x)); H = -1750 w q + p^2 (-600 v + 500 q^2) + 2500 v r - 7500 u s + 3125 s^2 + q^2 (-700 r - 1150 t) + p^3 (-2000 r - 600 t) + p (1000 x + 1700 u q + 4000 r^2 - 6375 q s + 2500 r t); L = -25 x p - 9 v p^2 - 25 w q - 7 u p q - 7 p^2 q^2 - 60 v r + 50 p^3 r + 128 q^2 r - 308 p r^2 + 525 u s - 145 p q s - 1000 s^2 - p^3 t + 11 q^2 t - 96 p r t; M = -125 x p + 67 v p^2 + 75 w q - 109 u p q - 79 p^2 q^2 - 420 v r + 210 p^3 r + 496 q^2 r - 676 p r^2 + 1175 u s - 415 p q s - 750 s^2 + 63 p^3 t + 27 q^2 t - 412 p r t; {A, B, F} = Select[{{A, B, F}, {-A, -B, F}, {B, -A, -F}, {-B, A, -F}}, Apply[25 (2 u - p q - 5 s) + (L #1 + M #2)/g + H/#3 != 0 &], 1][[1]]; P = 1/5 (5/4 (25 (2 u - p q - 5 s) + (L A + M B)/g + H/F))^(1/5); Q = -((4 p^2 q + 2 (36 q r + 7 q t - 5 w) + p (-45 s + 4 u + F))/(10 P F)); R = 1/(500 P^2) (-25 q + (25 (-40 r^2 - 35 q s + 2 p^2 (10 r + t) - 22 q u + 2 p (q^2 + v) - 10 x))/F + 1/g 2 (-105 q s A - 140 q s B + 4 r t (3 A + 4 B) + 2 p q^2 (7 A + 11 B) + r^2 (76 A + 68 B) - 2 p^2 (29 r A + 3 A t + 17 r B + 9 t B) + 23 q A u + 14 q B u - 2 p (2 A + 11 B) v + 35 A x + 5 B x)); S = 1/(500 P^3) (1/ g (-80 r s A + 30 s A t + 60 r s B + 40 s t B + 14 q^3 (A + 3 B) - 16 r g + 3 t g + 2 p^2 (26 s A + 18 s B + g) + 8 r A u + 44 r B u - 2 q (p (26 r A + 3 A t + 33 r B + 14 t B) + (A + 18 B) v) + p (-8 A w + 6 B w)) + (5 (8 p^3 q - 2 p q (13 r + t) + p^2 (-20 s + 8 u) + 5 (14 q^3 + 10 r s - 5 s t - 10 r u - 2 q v)))/F); {P, Q, R, S} = Together /@ {P, Q, R, S};Select[{P + Q + R + S, (-1)^(4/5) P - (-1)^(1/5) Q + (-1)^(2/5) R - (-1)^(3/ 5) S, -(-1)^(3/5) P + (-1)^(2/5) Q + (-1)^(4/ 5) R - (-1)^(1/5) S, +(-1)^(2/5) P - (-1)^(3/ 5) Q - (-1)^(1/5) R + (-1)^(4/ 5) S, -(-1)^(1/5) P + (-1)^(4/5) Q - (-1)^(3/ 5) R + (-1)^(2/5) S} - b/(5 a), ! TrueQ[# != root] &, 1][[1]]]; 
$\endgroup$
12
  • $\begingroup$ Nice job there. $\endgroup$ Commented Feb 10 at 19:32
  • 1
    $\begingroup$ If you refer to QuinticToRadicals, it seems to work fine for me in 14.3. $\endgroup$ Commented Aug 12 at 17:55
  • 1
    $\begingroup$ I have filed a bug report for this. $\endgroup$ Commented Aug 12 at 20:44
  • 1
    $\begingroup$ @ВалерийЗаподовников, for this particular case, it seems that the evaluation of (-1)^(2/5) R goes astray ... Adding an expression-manipulating function before the last Select, like {P, Q, R, S} = Together /@ {P, Q, R, S}; (or Expand or Simplify ...), seems to help. $\endgroup$ Commented Aug 13 at 11:34
  • 1
    $\begingroup$ @DanielLichtblau Fixed the code using recommendation from Domen $\endgroup$ Commented Aug 15 at 9:56
15
$\begingroup$

I wrote this function based on Daniel Lazard's paper Solving Quintics by Radicals:

QuinticToRadicals[root_Root] := Block[{a, b, c, d, e, f, h, p, q, r, s, t, u, v, w, x, z, g, F, A, B, G, H, L, M, P, Q, R, S}, If[!TrueQ[Element[root, Algebraics]], Return[root]]; With[{m = MinimalPolynomial[root, z]}, If[!PolynomialQ[m, z] || Exponent[m, z] != 5, Return[root]]; {f, e, d, c, b, a} = CoefficientList[m, z]]; p = (5 a c - 2 b^2)/(5 a^2); q = (25 a^2 d - 15 a b c + 4 b^3)/(25 a^3); r = (125 a^3 e - 50 a^2 b d + 15 a b^2 c - 3 b^4)/(125 a^4); s = (3125 a^4 f - 625 a^3 b e + 125 a^2 b^2 d - 25 a b^3 c + 4 b^5)/(3125 a^5); G = Select[Solve[{(p^2 + 12 r + 4 t) Discriminant[z^5 + p z^3 + q z^2 + r z + s, z] == (2 t^3 + 8 t^2 r + (2 p q^2 - 6 p^2 r + 24 r^2 - 50 q s) t - 2 q^4 + 13 p q^2 r - 16 (p^2 - 4 r) r^2 - 5 q (3 p^2 + 40 r) s + 125 p s^2)^2, 4 r^2 + 2 q (p q + 5 s + 2 u) + 5 x == t^2 + 2 p^2 (3 r + t) + 2 p v, 3 p^4 (2 r + t) + 5 p s (50 s + 9 u) + 3 q^2 (18 p r + 5 p t + 4 v) + q (-20 s (7 r + 3 t) + 6 r u + p w) + 2 (40 r^3 + 16 r^2 t + t^3 + 25 s w + 10 r x) == 14 q^4 + 28 p r v + p^2 (52 r^2 + 36 r t + q (3 p q + 41 s + 3 u) - 3 p v + 3 x), q^4 (30 r - 4 t) + t^4 + p^4 (22 r^2 - 6 q s + 4 r t) + q^2 (50 s^2 - 155 s u - 29 r v) + p^3 (-4 q^2 (4 r + t) + 9 s u + 4 r v) + p (q^3 (-132 s + 8 u) - 5 s (110 r s - 5 s t + 28 r u) + 16 r^2 v + q (105 s v + 8 r w) - 3 q^2 (14 r^2 + 5 r t - 3 x)) + p^2 (4 q^4 - 68 r^3 + 16 r^2 t + q (404 r s + 79 s t - 17 r u) - 4 q^2 v - 15 s w - 19 r x) == 16 r^4 + 3 q^3 w + 20 r s (4 q t + 5 w) + 4 r^2 (5 q s - 17 q u - 15 x) + 25 s (5 s v + 9 q x), 625 s^3 (10 s + u) + q^5 (858 s + 20 u) + p^5 (198 s^2 + 5 q^2 (5 r + t) - 15 r v) + q^2 (5 s (2140 r s + 365 s t + 43 r u) - 12 r^2 v) + q^4 (-34 r^2 - 43 r t + 22 x) + 8 r^2 (120 r^3 + 64 r^2 t + 25 s w + 30 r x) + p^3 (q^3 (181 s - 5 u) + s (-810 r s + 355 s t - 147 r u) + 168 r^2 v - q (212 s v + 11 r w) - q^2 (22 r (13 r + 5 t) + 5 x)) + p^4 (-5 q^4 + q (-491 r s - 200 s t + 15 r u) + 5 q^2 v + 18 s w + r (4 r (91 r + 50 t) + 15 x)) + p^2 (5 q^4 (19 r + 3 t) + 2 q r (2060 r s + 864 s t - 45 r u) + 325 s^2 v + q^2 (3005 s^2 + 351 s u - 83 r v) + 3 q^3 w + 290 q s x - 2 r (544 r^3 + 216 r^2 t + 265 s w + 76 r x)) == 15 p^6 r (2 r + t) + 2 (t^5 + 750 r s^2 v) + q^3 (620 s v + 41 r w) + q (2640 r^2 s t + 8 r^3 (780 s - 19 u) + 2375 s^2 w + 700 r s x) + p (12 q^6 + 20 r s (-45 r s + 10 s t + 21 r u) + q^3 (4095 r s + 752 s t + 43 r u) - 10 q^4 v + 176 r^3 v + 5 q s (635 s (5 s + u) - 312 r v) - 124 q r^2 w + 1375 s^2 x - q^2 (612 r^3 + 220 r^2 t + 110 s w - 27 r x)), Element[t, Rationals]}, {t, u, v, w, x}], FreeQ[ConditionalExpression], 1]; If[G == {}, Return[root], G /. Rule -> Set]; g = -3 p^2 (-v + q^2) + 20 v r - 50 u s + 125 s^2 + 3 q^2 (-7 r + t) + p^3 (4 r + 3 t) + p (16 r^2 - q (u - 40 s) + 12 r t); h = 366 v q^3 - 402 q^5 - 748 u q^2 r + 440 w r^2 - 448 q r^3 - 12 p^5 s - 275 w q s + 2100 v r s - 1925 q^2 r s - 4875 u s^2 - 1875 s^3 + x (-65 p^2 q - 550 q r + 875 p s) + 524 q r^2 t - 1040 q^2 s t + p^4 q (158 r + 85 t) + p^3 (85 v q - 85 q^3 + 4 u r - 1462 r s - 418 s t) + p (41 w q^2 - 298 v q r - 56 u r^2 + 5 q s (419 u + 35 s) + 10 r s (290 r + 159 t) + q^3 (896 r + 419 t)) - p^2 (58 w r + 520 v s + q (73 u q - 142 r^2 + 159 q s + 440 r t)); F = Sqrt[ 5 (40 x p - 120 w q + p^2 (-24 v + 40 q^2) + 100 v r + 332 q^2 r - 300 u s + 125 s^2 + p^3 (-80 r - 24 t) + 24 q^2 t + p (88 u q + 160 r^2 - 480 q s + 100 r t))]; A = Sqrt[5/2 (g + h/F)]; B = 1/(A F) 5 (42 q^5 + 12 p^5 s + 3 p^4 q (14 r + 5 t) + q^2 (550 r s + 515 s t - 182 r u) - 6 q^3 v + p^3 (-15 q^3 + 492 r s + 213 s t - 4 r u + 15 q v) - 50 s (25 s^2 - 60 s u + 22 r v) - 40 r^2 w + 650 q s w + p^2 (-3 q^2 (52 s + 9 u) + 195 s v - 22 r w + q (358 r^2 + 50 r t - 35 x)) - 8 q r (29 r^2 + 23 r t + 25 x) + p (q^3 (-246 r + t) + 5 q s (565 s - 54 u) - 4 r (350 r s + 235 s t - 24 r u) + 68 q r v + 19 q^2 w - 250 s x)); H = -1750 w q + p^2 (-600 v + 500 q^2) + 2500 v r - 7500 u s + 3125 s^2 + q^2 (-700 r - 1150 t) + p^3 (-2000 r - 600 t) + p (1000 x + 1700 u q + 4000 r^2 - 6375 q s + 2500 r t); L = -25 x p - 9 v p^2 - 25 w q - 7 u p q - 7 p^2 q^2 - 60 v r + 50 p^3 r + 128 q^2 r - 308 p r^2 + 525 u s - 145 p q s - 1000 s^2 - p^3 t + 11 q^2 t - 96 p r t; M = -125 x p + 67 v p^2 + 75 w q - 109 u p q - 79 p^2 q^2 - 420 v r + 210 p^3 r + 496 q^2 r - 676 p r^2 + 1175 u s - 415 p q s - 750 s^2 + 63 p^3 t + 27 q^2 t - 412 p r t; {A, B, F} = Select[{{A, B, F}, {-A, -B, F}, {B, -A, -F}, {-B, A, -F}}, Apply[25 (2 u - p q - 5 s) + (L #1 + M #2)/g + H/#3 != 0 &], 1][[1]]; P = 1/5 (5/4 (25 (2 u - p q - 5 s) + (L A + M B)/g + H/F))^(1/5); Q = -((4 p^2 q + 2 (36 q r + 7 q t - 5 w) + p (-45 s + 4 u + F))/( 10 P F)); R = 1/(500 P^2) (-25 q + ( 25 (-40 r^2 - 35 q s + 2 p^2 (10 r + t) - 22 q u + 2 p (q^2 + v) - 10 x))/F + 1/g 2 (-105 q s A - 140 q s B + 4 r t (3 A + 4 B) + 2 p q^2 (7 A + 11 B) + r^2 (76 A + 68 B) - 2 p^2 (29 r A + 3 A t + 17 r B + 9 t B) + 23 q A u + 14 q B u - 2 p (2 A + 11 B) v + 35 A x + 5 B x)); S = 1/(500 P^3) (1/ g (-80 r s A + 30 s A t + 60 r s B + 40 s t B + 14 q^3 (A + 3 B) - 16 r g + 3 t g + 2 p^2 (26 s A + 18 s B + g) + 8 r A u + 44 r B u - 2 q (p (26 r A + 3 A t + 33 r B + 14 t B) + (A + 18 B) v) + p (-8 A w + 6 B w)) + ( 5 (8 p^3 q - 2 p q (13 r + t) + p^2 (-20 s + 8 u) + 5 (14 q^3 + 10 r s - 5 s t - 10 r u - 2 q v)))/F); Select[{P + Q + R + S, (-1)^(4/5) P - (-1)^(1/5) Q + (-1)^(2/5) R - (-1)^(3/5) S, -(-1)^(3/5) P + (-1)^(2/5) Q + (-1)^(4/5) R - (-1)^(1/5) S, +(-1)^(2/5) P - (-1)^(3/5) Q - (-1)^(1/5) R + (-1)^(4/5) S, -(-1)^(1/5) P + (-1)^(4/5) Q - (-1)^(3/5) R + (-1)^(2/5) S} - b/(5 a), !TrueQ[# != root] &, 1][[1]]]; 

Beware! If found some typos in the paper on p. 222 in the formula for $P_{22}$: the term $\color{red}{8p^3}$ should be replaced with $8p^3q$, and the term $\color{red}{70q^3q}$ should be replaced with $70q^3$.

The function can be used on quintic Root objects as follows:

QuinticToRadicals[Root[-1 + 2 #1 + 3 #1^2 + #1^5 &, 1]] 

After some simplifications the root I am interested in can be represented as

Block[{a, b, c, d, f, g, h}, a = Sqrt[25778705 + 5353862 Sqrt[5]]; b = 253 Sqrt[47] Sqrt[223185962057628283872014741096225 + 46404398781233715250377772758698 Sqrt[5]]; c = 118179607126755427283 - 33773932059671 Sqrt[5]; d = 1302883789494160617301390 - 930862886277288987 Sqrt[5]; f = 765881115 - 1071962031710725 Sqrt[5]; g = 5155741^(1/5) (6514418947470803086506950 - 4654314431386444935 Sqrt[5] + 253 Sqrt[47] Sqrt[223185962057628283872014741096225 + 46404398781233715250377772758698 Sqrt[5]])^(1/5); h = 1/(5 d + b)^(1/5); -1024/25778705 (10 5^(1/5) 10311482^(4/5) g + 253 10^(2/5) Sqrt[47] a h^2 (4993350841 5^(1/5) + 825542539482355 2^(1/5) h) + ( 38747022105 Sqrt[47] (-831611761 5^(1/10) 10311482^(2/5) + 18363423328399 2^(3/5) 5^(9/10) g^2 h^3))/(a g^2) + 25778705 (440984 + 2 2^(4/5) 5^(1/5) (5 d - b)^(1/5) - 2^(2/5) 5^(1/10) h^2 (f - 2^(1/5) 5^(3/10) c h)))] 

Update: I found a rather simple case case when my implementation fails:

QuinticToRadicals[Root[-6 - 10 #1 - 10 #1^2 + #1^5 &, 1]] 

gives a message about division by zero and returns Indeterminate, while the expected answer is

2^(1/5) + 2^(2/5) 

It will try to investigate and fix this issue. Any help is appreciated.

$\endgroup$
17
  • 1
    $\begingroup$ Please let me know if you find solvable quintics that this program cannot handle. $\endgroup$ Commented Jan 1, 2017 at 5:31
  • 2
    $\begingroup$ It would be great if you could amend your function with the method by Tyma Gaidash who found how to solve a general quintic in terms of InverseBetaRegularized function math.stackexchange.com/a/4442541/2513 $\endgroup$ Commented Jul 19, 2022 at 18:12
  • 1
    $\begingroup$ For QuinticToRadicals[Root[-1 + 2 #1 + 3 #1^2 + #1^5 &, 1]] your formula gives a very big output, while a shorter answer is $-\frac{\sqrt[5]{91 \sqrt{5}-\sqrt{\frac{94}{5} \left(4225-\frac{9439}{\sqrt{5}}\right)}-195}}{2^{2/5} 5^{3/5}}-\frac{\sqrt[5]{91 \sqrt{5}+\sqrt{\frac{94}{5} \left(4225-\frac{9439}{\sqrt{5}}\right)}-195}}{2^{2/5} 5^{3/5}}-\frac{\sqrt[5]{50 \sqrt{\frac{7943}{6250}+\frac{443633}{156250 \sqrt{5}}}-\frac{91}{\sqrt{5}}-39}}{10^{2/5}}-\frac{(-1)^{4/5} \sqrt[5]{-50 \sqrt{\frac{7943}{6250}+\frac{443633}{156250 \sqrt{5}}}-\frac{91}{\sqrt{5}}-39}}{10^{2/5}}$ $\endgroup$ Commented Jul 19, 2022 at 18:23
  • 2
    $\begingroup$ Or even $-\frac{(-1)^{4/5} \sqrt[5]{-455 \sqrt{5}-\sqrt{94 \left(9439 \sqrt{5}+21125\right)}-975}+\sqrt[5]{-455 \sqrt{5}+\sqrt{94 \left(9439 \sqrt{5}+21125\right)}-975}+\sqrt[5]{455 \sqrt{5}-\sqrt{94 \left(21125-9439 \sqrt{5}\right)}-975}+\sqrt[5]{455 \sqrt{5}+\sqrt{94 \left(21125-9439 \sqrt{5}\right)}-975}}{2^{2/5} 5^{4/5}}$ $\endgroup$ Commented Jul 19, 2022 at 18:37
  • 1
    $\begingroup$ @VladimirReshetnikov Your code broke in 14.3.0 Mathematica. try QuinticToRadicals[Root[-1 + 2 #1 + 3 #1^2 + #1^5 &, 1]] $\endgroup$ Commented Aug 12 at 11:55
12
$\begingroup$

I reproduced the algorithm from this post and I tried to use it on your example: An Easy Way To Solve The Solvable Quintic Using Two Sextics.

As mentioned in the article, for the quintic equation:

$$a x^5 + b x^4 + c x^3 + d x^2 + e x + f=0$$

If the equation is solvable, then the solution is of the form:

$$\begin{bmatrix} x_1\\x_2\\x_3\\x_4\\x_5 \end{bmatrix}= \begin{bmatrix} 1 & 1 & 1 & 1 \\ e^{+\frac{2 i \pi }{5}} & e^{+\frac{4 i \pi }{5}} & e^{-\frac{4 i \pi}{5}} & e^{-\frac{2 i \pi}{5}} \\ e^{+\frac{4 i \pi }{5}} & e^{-\frac{2 i \pi}{5}} & e^{+\frac{2 i \pi }{5}} & e^{-\frac{4 i \pi}{5}} \\ e^{-\frac{4 i \pi}{5}} & e^{+\frac{2 i \pi }{5}} & e^{-\frac{2 i \pi}{5}} & e^{+\frac{4 i \pi }{5}} \\ e^{-\frac{2 i \pi}{5}} & e^{-\frac{4 i \pi}{5}} & e^{+\frac{4 i \pi }{5}} & e^{+\frac{2 i \pi }{5}} \\ \end{bmatrix} \cdot \begin{bmatrix} \sqrt[5]{\zeta_1}\\ \sqrt[5]{\zeta_2}\\ \sqrt[5]{\zeta_3}\\ \sqrt[5]{\zeta_4}\\ \end{bmatrix}-\frac{b}{5a}$$

So my algorithm only gives $\zeta_1,\zeta_2,\zeta_3,\zeta_4$.

simplify[e_] := FullSimplify[ ToRadicals@e, ComplexityFunction -> (100 Count[#, Root[__], All] + LeafCount[#]&) ]; getCoefficient[a_, b_, c_, d_, e_, f_] := { (-2 b^2 + 5 a c) / (50 a^2), (4 b^3 - 15 a b c + 25 a^2 d) / (250 a^3), (-3 b^4 + 15 a b^2 c - 50 a^2 b d + 125 a^3 e) / (625 a^4), (b (4 b^4 - 25 a b^2 c + 125 a^2 b d - 625 a^3 e)) / (3125 a^5) + f / a }; findGenerator[a_, b_, c_, d_] := Block[ {\[CapitalDelta], d1, d2, g1, g2, discriminant, generator}, \[CapitalDelta] = 16 c^2 (-200 a^3 b^2 - 135 b^4 + 400 a^4 c + 360 a b^2 c - 160 a^2 c^2 + 16 c^3) + 32 b (4 b^2 (40 a^3 + 27 b^2) - 45 a (8 a^3 + 7 b^2) c + 140 a^2 c^2 - 20 c^3) d + 8 (432 a^5 + 330 a^2 b^2 - 180 a^3 c + 45 b^2 c + 20 a c^2) d^2 - 120 a b d^3 + d^4; d1 = { 3125, 0, -625 (3 a^2 + c), 0, 25 (15 a^4 + 8 a b^2 - 2 a^2 c + 3 c^2 - 2 b d), Sqrt[\[CapitalDelta]], -25 a^6 - 40 a^3 b^2 - 16 b^4 + 35 a^4 c + 28 a b^2 c - 11 a^2 c^2 + c^3 - 2 b (a^2 + c) d + a d^2 }; d2 = { 3125, 0, 625 (-3 b^2 + 4 a c), 0, 25 (15 b^4 - 40 a b^2 c + 20 a^2 c^2 - 4 c^3 + 8 a^2 b d + 6 b c d - 2 a d^2), d Sqrt[\[CapitalDelta]], -25 (b^3 - 2 a b c)^2 - 2 b (20 a^2 - 3 c) (b^2 - 2 a c) d - (16 a^4 + 2 a b^2 - 8 a^2 c + c^2) d^2 + b d^3 }; g1 = guessGenerator[d1]; g2 = guessGenerator[d2]; If[Length@g1 == 0, Return[Failure["Unable to solve", <||>]]]; If[Length@g2 == 0, Return[Failure["Unable to solve", <||>]]]; {First@guessGenerator[d1], First@guessGenerator[d2]} ]; guessGenerator[discriminant_] := Block[ {kx, ks}, ks = NSolve[FromDigits[discriminant, kx] == 0, kx,Reals, WorkingPrecision -> 60]; Select[RootApproximant[kx /. ks, 2], FromDigits[discriminant, #] == 0&] ]; solveResolvent[a_, b_, c_, d_, p_, q_] := Block[ {D5Resolvent, F5Resolvent, kx, var}, D5Resolvent = {1, d, 2 a^5 - 5 a^3 c - 4 b^2 c + a (c^2 + 2 b d), -a^5 d, a^10}; F5Resolvent = { p, p (d - 20 p q), -p (2 a^5 + 2 a^2 b^2 + 20 a^3 p^2 + 10 a p^4 + b^2 (c - 6 p^2)) - 2 b (a^3 + b^2 - a c + 3 a p^2) q + (4 a^2 - c) p q^2 + 2 b q^3, -5 a^6 b p + a^7 q + a^5 (-c + p^2) q + a p^3 (-4 b^3 + 3 c p q - 13 p^3 q + 4 b q^2) + a^3 p (-4 b^3 - 2 c p q + 11 p^3 q + 4 b q^2) + a^2 p^2 (-2 b c p + 9 b p^3 + 6 b^2 q - 6 q^3) + a^4 (3 b c p - 5 b p^3 + b^2 q - q^3) + p^4 (b (-c p + p^3) + b^2 q - q^3), p (a^2 - p^2)^5 }; If[ p == 0, var /. Solve[FromDigits[D5Resolvent, var] == 0, var], var /. Solve[FromDigits[F5Resolvent, var] == 0, var] ] ]; getPseudoRoot[a_, b_, c_, d_, e_, f_] := Block[ {p, q, r, s, g, u, v}, {p, q, r, s} = getCoefficient[a, b, c, d, e, f]; g = findGenerator[p, q, r, s]; If[ FailureQ@g, Return@g, {u, v} = g ]; {-b / (5a), solveResolvent[p, q, r, s, u, v]} ]; 

coeff = Reverse@CoefficientList[-1 + 2 #1 + 3 #1^2 + #1^5 &[x], x]; coeff = Reverse@CoefficientList[-6 - 10 #1 - 10 #1^2 + #1^5 &[x], x]; {a, b} = getPseudoRoot @@ coeff x1 = Tr@Surd[b, 5] + a (*x1//RootReduce*) RootApproximant[x1, 5] 

It successfully found a root of the equation $x^5-10 x^2-10 x-6=0$ is $x_1=\sqrt[5]{2}+2^{2/5}$.

But it failed in your example.

After research, I found that this is not a problem of the algorithm.

The problem is that RootApproximant in guessGenerator doesn't fit the huge coefficients well, I don't know how to fix this.

After manual fitting, I found $\{p,q\}=\left\{-58275659776 \sqrt{5},26315474732392120320 \sqrt{5}\right\}$

So we have:

\begin{aligned} -\frac{x_1}{2048} &=220492\\ &+ 2^{4/5} \sqrt[5]{5 \left(-4654314431386444935 \sqrt{5}+253 \sqrt{47 \left(46404398781233715250377772758698 \sqrt{5}+223185962057628283872014741096225\right)}+6514418947470803086506950\right)}\\ &+2^{4/5} \sqrt[5]{5 \left(-4654314431386444935 \sqrt{5}-253 \sqrt{47 \left(46404398781233715250377772758698 \sqrt{5}+223185962057628283872014741096225\right)}+6514418947470803086506950\right)}\\ &+2^{4/5} \sqrt[5]{5 \left(4654314431386444935 \sqrt{5}+253 \sqrt{47 \left(223185962057628283872014741096225-46404398781233715250377772758698 \sqrt{5}\right)}+6514418947470803086506950\right)}\\ &+2^{4/5} \sqrt[5]{5 \left(4654314431386444935 \sqrt{5}-253 \sqrt{47 \left(223185962057628283872014741096225-46404398781233715250377772758698 \sqrt{5}\right)}+6514418947470803086506950\right)} \end{aligned}

eq = 1152921504606846976 + 99923616732282880 x + 3740744716124160 x^2 - 2794496983040 x^3 + 2257838080 x^4 + x^5; coeff = Reverse@CoefficientList[eq, x]; {a, b} = { -451567616, solveResolvent[ -203913591269621760, 184161674750051152297984000, -124742258113864494225907240665088000, 75106136945420552127297065232870932480000000, -58275659776 Sqrt[5], 26315474732392120320 Sqrt[5] ] } x1 = N[Tr@Surd[b, 5] + a, 50] First[x /. NSolve[eq == 0, WorkingPrecision -> 50]] (*x1//RootReduce*) RootApproximant[x1, 5] 

After the verification of the numerical value, it is found that the fifty digits are exactly the same.

$\endgroup$
1
  • $\begingroup$ Nice. But I'd trust this more if it were verified to 1000 or so digits. $\endgroup$ Commented May 20, 2022 at 23:24

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.