Let
sigma1[v_]=-0.0000438577 Sqrt[-5.19886*10^8 + 100. v^2]; sigma2[v_]=-1.*Sqrt[-(1.34039*10^13/( 1.34039*10^13 - (0. + 1.34039*10^12 I) v)) + ((0. + 5.49727*10^16 I) v)/( 1.34039*10^13 - (0. + 1.34039*10^12 I) v) + (5.49714*10^15 v^2)/( 1.34039*10^13 - (0. + 1.34039*10^12 I) v) - ((0. + 2.74857*10^14 I) v^3)/( 1.34039*10^13 - (0. + 1.34039*10^12 I) v) - ( 0.5 Sqrt[-1.20874*10^34 v^2 + (0. + 2.41748*10^33 I) v^3 + 2.41748*10^32 v^4 - (0. + 1.20874*10^31 I) v^5 - 3.02185*10^29 v^6])/(1.34039*10^13 - (0. + 1.34039*10^12 I) v)]; sigma3[v_]= Sqrt[(-1.34039*10^13 + (0. + 5.49727*10^16 I) v + 5.49714*10^15 v^2 - (0. + 2.74857*10^14 I) v^3 - 0.5 Sqrt[v^2 (-1.20874*10^34 + (0. + 2.41748*10^33 I) v + 2.41748*10^32 v^2 - (0. + 1.20874*10^31 I) v^3 - 3.02185*10^29 v^4)])/(1.34039*10^13 - (0. + 1.34039*10^12 I) v)]; where the use the following parameters:
c1=4631.0; c2=2280.1; d=8066.8; eps=0.0168; kap=1; taut=0.1;tauq=0.1; Consider now the following 5th degree Polynomial h[v]:
h[v_] =I*sigma2[v]*(1+sigma2[v]^2-v^2/c1^2)*(4*sigma1[v]*sigma3[v]-(2-v^2/c2^2)*((1+sigma1[v]^2)*c1^2/c2^2-2))*(1-I*kap*taut*v-(I*d*v/(kap*(1+sigma1[v]^2)))*(1-I*kap*tauq*v-kap^2*tauq^2*v^2/2))+(eps*c1^2*d*v/(kap*c2^2))*(1-I*kap*tauq*v-kap^2*tauq^2*v^2/2)*(4*sigma2[v]*sigma3[v]*c2^2/c1^2+(2-v^2/c2^2)*(2*c2^2/c1^2-v^2/c1^2-sigma2[v]*(1+sigma2[v]^2-v^2/c1^2))) and further define F(Re(v), Im(v))=Log|h(v)|.
I need a plot like the following Figure 3 from the above information: 
Note that we use the function h(v) instead of D(v) in Mathematica. Also, it would be nice if possible to show the extremum values and the corresponding points in the figures. Can anyone please help me? I am at basic level in learning Mathematica. Seeking kind help!
Thank you very much in advance!!!




Log[Abs[h[v]]orAbs[Log[h[v]]]? $\endgroup$