Since the question isn't clear about which datasets are which and arguably has too many parameters, I'll use the example from here instead:
$$ \begin{array}{l} A+B\underset{k_2}{\overset{k_1}{\leftrightharpoons }}X \\ X+B\overset{k_3}{\longrightarrow }\text{products} \\ \end{array} \Bigg\} \Longrightarrow A+2B\longrightarrow \text{products} $$
We solve the system and generate some fake data:
sol = ParametricNDSolveValue[{ a'[t] == -k1 a[t] b[t] + k2 x[t], a[0] == 1, b'[t] == -k1 a[t] b[t] + k2 x[t] - k3 b[t] x[t], b[0] == 1, x'[t] == k1 a[t] b[t] - k2 x[t] - k3 b[t] x[t], x[0] == 0 }, {a, b, x}, {t, 0, 10}, {k1, k2, k3} ]; abscissae = Range[0., 10., 0.1]; ordinates = With[{k1 = 0.85, k2 = 0.15, k3 = 0.50}, Through[sol[k1, k2, k3][abscissae], List] ]; data = ordinates + RandomVariate[NormalDistribution[0, 0.1^2], Dimensions[ordinates]]; ListLinePlot[data, DataRange -> {0, 10}, PlotRange -> All, AxesOrigin -> {0, 0}]
The data look like this, where blue is A, purple is B, and gold is X:

The key to the exercise, of course, is the simultaneous fitting of all three datasets in order for the rate constants to be determined self-consistently. To achieve this we have to prepend to each point a number, i, that labels the dataset:
transformedData = { ConstantArray[Range@Length[ordinates], Length[abscissae]] // Transpose, ConstantArray[abscissae, Length[ordinates]], data } ~Flatten~ {{2, 3}, {1}};
We also need a model that returns the values for either A, B, or X depending on the value of i:
model[k1_, k2_, k3_][i_, t_] := Through[sol[k1, k2, k3][t], List][[i]] /; And @@ NumericQ /@ {k1, k2, k3, i, t};
The fitting is now straightforward. Although it will help if reasonable initial values are given, this is not strictly necessary here:
fit = NonlinearModelFit[ transformedData, model[k1, k2, k3][i, t], {k1, k2, k3}, {i, t} ];

The result is correct. Worth noting, however, is that the off-diagonal elements of the correlation matrix are quite large:
fit["CorrelationMatrix"] (* -> {{ 1., 0.764364, -0.101037}, { 0.764364, 1., -0.376295}, {-0.101037, -0.376295, 1. }} *)