3
$\begingroup$

The RandomFunction generates an output in the form of TemporalData. How can I plot a scaled version of this data, e.g., all values divided by $n$ with time kept fixed? I read this post but couldn't find an answer.

$\endgroup$
3
  • 1
    $\begingroup$ s = RandomFunction[BinomialProcess[1/3], {0, 50}]; ListPlot[{s, s["PathStates"]/2}] $\endgroup$ Commented Nov 23, 2015 at 23:45
  • $\begingroup$ @eldo's answer is better $\endgroup$ Commented Nov 24, 2015 at 0:00
  • 3
    $\begingroup$ With direct arithmetic on TemporalData in 10.3, normalization is not necessary: s = RandomFunction[BinomialProcess[1/3], {10, 50}]; ListPlot[{s, s/2}] $\endgroup$ Commented Nov 24, 2015 at 0:02

2 Answers 2

3
$\begingroup$
td = RandomFunction[WienerProcess[], {0, 1, .01}, 10]; ListLinePlot[td] 

enter image description here

Scaled

ListLinePlot[Normal@td /. {a_, b_} :> {a, b/10}] 

enter image description here

$\endgroup$
4
$\begingroup$
td = RandomFunction[WienerProcess[], {0, 1, .01}, 10]; GraphicsColumn[{ListLinePlot[td], ListLinePlot[td/10]}] 

Out

$\endgroup$

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.